
Guillaume Nibert
guillaume.nibert@snowpack.eu

Proving and analysing security
protocols with Tamarin Prover
LINCS Network Theory Working Group, IMT Palaiseau, France, Wednesday 20th December 2023

Original works:
The Tamarin Team

https://creativecommons.org/licenses/by-nc-sa/4.0/

Adapted Material – Creative Commons License

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 2

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. This is an adapted material of the Tamarin
Prover Manual created by The Tamarin Team. You
may reproduce and edit this work with attribution for
all non-commercial purposes.

https://tamarin-prover.github.io/
https://tamarin-prover.github.io/manual/index.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode#s1a
https://tamarin-prover.github.io/manual/index.html

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 3

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Tamarin Prover

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 4

Open-source model checker for formal verification and analysis of security protocols in the
symbolic model. It was initially developed at the Information Security Institute, ETH Zürich.

Core team: David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, Benedikt Schmidt

• Cross-platform (Linux, macOS, Windows with WSL)
• Falsification and unbounded verification

support
• Diffie-Hellmann exponentiation and XOR

messages support

• Security protocols specification →Multiset rewriting
systems

• Analysis of the protocols “w.r.t. (temporal) first-order
properties”

• ProVerif and Deepsec export [9]

TLS 1.3 [1, 2, 3] 5G authentication [4, 5, 6] IEEE 802.11 WPA2 [7] + patched version against KRACK [8]

https://tamarin-prover.github.io/
https://infsec.ethz.ch/
https://ethz.ch/en.html
https://people.inf.ethz.ch/basin/
https://cispa.de/en/people/cas.cremers
https://www.jannikdreier.net/
mailto:iridcode@gmail.com
https://people.inf.ethz.ch/rsasse/
https://beschmi.net/
https://tamarin-prover.github.io/
https://bblanche.gitlabpages.inria.fr/proverif/
https://deepsec-prover.github.io/

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 5

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 6

Symbolic modeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Specification of
the protocol’s

properties

Initiator

Responder

Trusted key server

Proof that satisfies
the properties.

• Can be automatically
constructed…

• including an arbitrary number
of protocol instances running in
parallel…

• while taking into account the
adversary’s actions.

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 7

Symbolic modeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Initiator

Responder

Trusted key server

Multiset rewriting rules → labeled transition system

Symbolic representation of:
• the adversary’s knowledge
• the messages on the network
• information about freshly generated values
• the protocol’s state

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 8

Symbolic modeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Initiator

Responder

Trusted key server

Interactions between :&

• Updating network messages

• Generating new messages

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 9

Symbolic modeling / analysis of security protocols

Input Output

Specification of
the protocol’s

properties

→ Trace properties

Traces of the transition system

or

Observational equivalence of 2 transition systems [15]

reasoning

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 10

Symbolic modeling / analysis of security protocols

Input Output

Proof that satisfies
the properties.

• Can be automatically
constructed…

• including an arbitrary number
of protocol instances running in
parallel…

• while taking into account the
adversary’s actions.

Automated mode: deduction and equational reasoning
with heuristics.
- Termination: proof or correctness or counterexample.
- May not terminate as correctness of security protocol

is an undecidable problem [13].

Interactive mode: explore proof states, attack graphs
→ combine manual proof guidance & automated mode.

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 11

Symbolic modeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Specification of
the protocol’s

properties

Initiator

Responder

Trusted key server

Proof that satisfies
the properties.

• Can be automatically
constructed…

• including an arbitrary number
of protocol instances running in
parallel…

• while taking into account the
adversary’s actions.

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 12

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication

Starting with Tamarin
Multiset rewriting rules
Creating a PKI
Modelling the adversary
Modelling the protocol
Writing a security property
Writing an executability property
Ending the theory

Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 13

Alice
(C)

Bob
(S)

k: Alice’s
symmetric key

pkS: Bob’s public key
aenc(k, pkS)

h(k)

aenc: asymmetric encryption function
h: hash function

1

2

Protocol to model

Adversary to consider

A Dolev-Yao adversary

• Controls the network
• Can delete, inject, modify and intercept messages
• + can dynamically compromise private keys

Security property to prove

From Alice point of view, k sent to Bob is not compromised

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 14

theory FirstExample // theory's name
begin

Starting with Tamarin

builtins: hashing, asymmetric-encryption

h (1 param): a cryptophic
hash function

aenc (2 params): asymmetric encryption algorithm
adec (2 params): asymmetric decryption algorithm
pk (1 param): public key corresponding to a private key

adec(aenc(m, pk(sk)), sk) is reduced to m

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

Authors: Simon Meier, Benedikt Schmidt
Updated by: Jannik Dreier, Ralf Sasse
Date: June 2016

mailto:iridcode@gmail.com
https://beschmi.net/
https://www.jannikdreier.net/
https://people.inf.ethz.ch/rsasse/

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 15

Multiset rewriting rules

Rules operates on the system’s state →Multiset of facts.
Facts: predicates storing state information. They appear on the trace.

Rule: “Premise”, “-->”, “Conclusion”.
Execution of a rule:

• Premise: all facts in the premise are present in the current state.
• --> execution of the rule.
• Conclusion: facts in the conclusion are added to the state, those from the premise are

removed.

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 16

Rules operates on the system’s state →Multiset of facts.
Facts: predicates storing state information.

Rule: “Premise”, “-->”, “Conclusion”.
Execution of a rule:

• Premise: all facts in the premise are present in the current state.
• --> execution of the rule.
• Conclusion: facts in the conclusion are added to the state, those from the premise are

removed.

Creating a PKI

rule Register_pk:
[Fr(~ltk)]

-->
[!Ltk($A, ~ltk), !Pk($A, pk(~ltk))]

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Fr: built-in fact,
denotes a freshly
generated name. For
modelling nonces/keys.

Registering a public key Special built-in Fr fact Variable prefixes

F(t1,...,tn) with terms ti and a fixed arity n.

Facts’ Tamarin representation

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 17

rule Register_pk:
[Fr(~ltk)]

-->
[!Ltk($A, ~ltk), !Pk($A, pk(~ltk))]

Registering a public key String constant

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Variable prefixes

'c' denotes a public
name in pub, global
constant.

Generation of a fresh name ~ltk (private key) and choice of a public name A (non-deterministically) which
corresponds to the agent associated with the newly created key-pair.

!Ltk($A, ~ltk) : association of agent A and its private key ~ltk
!Pk($A, pk(~ltk)) : association of agent A and its public key pk(~ltk)

! denotes the persistence
of a fact.

Persistence

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Creating a PKI

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 18

rule Get_pk:
[!Pk(A, pubkey)]

-->
[Out(pubkey)]

Allowing an adversary to get any
public key

The public key is read from the public-key database and sent to the network using
the built-in fact Out.

Out/In denotes a party sending (resp.
receiving) a message to (from) the untrusted
network (Dolev-Yao). Only right-hand (left-
hand) of a multiset rewrite rule.

Out/In special built-in facts

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

F
a

ct
s

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a
freshly generated name. For
modelling nonces/keys.

V
a

ri
a

b
le

s

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 19

rule Reveal_ltk:
[!Ltk(A, ltk)]

--[LtkReveal(A)]->
[Out(ltk)]

Dynamically compromising long-
term private keys

!Ltk(A, ltk): A’s long-term private-key ltk database entry was read.

LtkReveal(A): states that A’s long-term private-key ltk was compromised.

Out(ltk): A’s long-term private-key ltk was sent to the adversary.

-- [ACTIONFACT] ->: facts that do not
appear in state, but only on the trace.

Located within the arrow.

Action facts

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending (resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

// Start a new thread executing the client role, choosing the server
// non-deterministically.
rule Client_1:

[Fr(~k) // choose fresh key
, !Pk($S, pkS) // lookup public-key of server
]

-->
[Client_1($S, ~k) // Store server and key for next step of thread
, Out(aenc(~k, pkS)) // Send the encrypted session key to the server
]

rule Client_2:
[Client_1(S, k) // Retrieve server & session key from previous step
, In(h(k)) // Receive hashed session key from network
]

--[SessKeyC(S, k)]-> // State that the session key 'k'
[] // was setup with server 'S'

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – client side

20

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

-- [ACTIONFACT] ->: facts that do not
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending (resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:
[!Ltk($S, ~ltkS) // lookup the private-key
, In(request)] // receive a request
-->
[Out(h(adec(request, ~ltkS)))] // Return the hash of the

// decrypted request.

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – server side

21

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

-- [ACTIONFACT] ->: facts that do not
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending (resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

Appendix A2:
Authentication

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

22

lemma

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

23

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

24

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

f@i: predicate symbol
representing a fact occurring
at timepoint i (position i in
the trace).

Pred(t1,…,tn): syntactic
sugar, instantiation of a
predicate for the terms t1 to
tn.

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

25

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

¬(∃S,k,i,j.
SessKeyC(S,k) @ i ∧
K(k) @ j ∧
¬(∃r. LtkReveal(S) @ r)

)

f@i: predicate symbol
representing a fact occurring
at timepoint i (position i in
the trace).

Pred(t1,…,tn): syntactic
sugar, instantiation of a
predicate for the terms t1 to
tn.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints.

True if it holds on all traces

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

26

lemma Client_session_key_honest_setup:
exists-trace
" Ex S k #i.

SessKeyC(S, k) @ #i
& not(Ex #r. LtkReveal(S) @ r)

"

Client point of view - Model executability property

Security properties are defined
over traces of the action facts of
a protocol execution.

∃S,k,i. (
SessKeyC(S,k) @ i
∧ ¬(∃r. LtkReveal(S) @ r)

)

True if there exists a trace on which it holds

exists-trace keyword

Writing an executability property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

27

end

Ending the theory

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 28

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 29

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or false, such as "it is raining" or “5+5=10".

Symbols are the syntactic structures of a formal language used to illustrate ideas, concepts or abstractions.

A formula (or well-formed formula) is syntactic structure composed of a finite sequence of symbols.

A formal language is a syntactic structure (entity) composed of a set of finite strings of symbols (words that are
well-formed formulas).

Syntax is the study of the formal rules that define how logical expressions are constructed from symbols and
logical connectors.

Components of a propositional logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 30

Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or false, such as “it is raining” or “5+5=10".

Components of a propositional logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})

What is it for?

Creating proof systems
(i.e. a formal system, which
models a language)

Natural deduction system

Simple axiom system

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 31

First-order logic (First-order predicate calculus): extends propositional logic by adding predicates and two
quantifiers.

Predicate: symbol representing a relation or a property. E.g. Equal is the symbol of the Equal(a,b) formula where
a and b are elements from the same interpretation domain. Here the arity of the predicate is 2. = could be another
symbol to be used…

Quantifiers: ∀ and ∃.

Components of a first-order logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 32

Many-sorted first-order logic (typed first-order logic): extends first-order logic by allowing variables to have
different sorts (in different domains).

E.g. SessKeyC(S, k) is the predicate symbol of the SessKeyC(S, k) formula where S and k are elements from
different interpretation domains.

“with a sort for timepoints” refer to temporal logic a branch of modal logic.

Modal logic deals with the concept of necessity and possibility:
• Temporal logic: type of modal logic that deals with the concepts of time and temporal relations

(necessity/possibility of a predicate being true at time t).

Components of a many-sorted first-order logic with sort for timepoints language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters where primitive

variables belong to different interpretation domains…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 33

Fragment (from a language): subset of the original language by applying it syntax restrictions.

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 34

Fragment (from a language): subset of the original language by applying it syntax restrictions.

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 35

Fragment (from a language): subset of the original language by applying it syntax restrictions.

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 36

Fragment (from a language): subset of the original language by applying it syntax restrictions.

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Decidability of the logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 37

Fragment (from a language): subset of the original language by applying it syntax restrictions.

Components of a guarded fragment of a many-sorted first-order logic with sort for timepoints language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters where primitive

variables belong to different interpretation domains…)
• all quantified variables are guarded by atoms.
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Decidable logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Appendix A6

Appendix A7

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 38

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin

Ubuntu installation
Message theory
Multiset rewriting rules
Raw & refined sources
Lemmas: security proof of the Simple Encrypted Communication protocol

Partial deconstructions
Resources materials
Appendices
References

Installation

Ubuntu installation

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 39

Other OSes: https://tamarin-prover.github.io/manual/master/book/002_installation.html

Installing the Homebrew package manager
sudo apt install build-essential procps curl file git

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Installation of Tamarin
brew install tamarin-prover/tap/tamarin-prover

https://tamarin-prover.github.io/manual/master/book/002_installation.html

Running Tamarin

Opening the First example

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 40

tamarin-prover interactive FirstExample.spthy

First example available at: https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy
http://127.0.0.1:3001/

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 41

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 42

Return to welcome page

Download the theory +
partial proofs if exists

Source
code

Graph
visualization
details levelAdversary

Protocol

Sources

Properties to prove

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 43

Adversary
List of symbols of functions, relations,
constants and equations.

Describe the adversary’s applicable
functions.

Describe the adversary’s extractable
terms from larger terms by using
functions.

Details: Appendix A3

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 44

Offer an interface that
bridges protocol
Output/Input and adversary
deduction.

Protocol

Appendix A1

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 45

Sources
Automated proof

generation ☺

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 46

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 47

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

set of possible sourcesFact
precomp.

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 48

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules

set of possible sourcesFact
precomp.

Fact obtainment

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 49

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

Automated proof
generation ☺

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 50

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof
generation ⚠

Automated proof
generation ☺

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 51

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof
generation ⚠

Automated proof
generation ☺

mitigation

Automated proof
generation ☺

sources lemmas

modelling tricks

auto-sources

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 52

Sources

Tamarin’s precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof
generation ⚠

Automated proof
generation ☺

mitigation

Automated proof
generation ☺

sources lemmas

modelling tricks

auto-sources

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 53

Case distinctions

All possible sources for a fact

Backward search

Avoid re-computations

Instance of the Register_pk
rule (green box)

Called the “sink” of the !Ltk(t.1, t.2) fact.

Represents the origins of

protocol facts

(linear/persistent facts)

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 54

Requires a
Register_pk

instance
Requires a

Register_pk
instance

Represents the origins of protocol facts
(linear/persistent facts)

Represents steps where the adversary
extracts value from a message he received.

Represents an ordering constraint stemming
from formulas, for example

from the current lemma or a restriction.

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 55

Constraint solving

Refining knowledge
about property &

protocol

Property holds in
all possible cases

Counterexample

=

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 56

Constraint solving

Refining knowledge
about property &

protocol

Property holds in
all possible cases

Counterexample

=

or

state: empty

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 57

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 58

Searching for an
execution that contains

a SessKeyC(S, k)
and

a K(k) action

The sole method for acquiring
SessKeyC(S, k) is by using an
instance of the Client_2 rule.

K(k): round box (adversary reasoning)

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 59

Contradiction

Represents the origins of protocol facts
(linear/persistent facts)

Represents an ordering constraint stemming
from formulas, for example

from the current lemma or a restriction.

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 60

Green: success
Red: counterexample

Autoprove or 1.
multiple times.

Represents steps where the adversary extracts value

from a message he received.

Represents an ordering constraint stemming from

formulas, for example

from the current lemma or a restriction.

Represents the origins of protocol facts

(linear/persistent facts)

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 61

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions

The problem
Solution - Sources lemmas approach
Solution - Auto-sources approach

Resources materials
Appendices
References

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 62

Initiator
(I)

Responder
(R)

pk(R):
Responder’s
public key
nr: nonce
generated by R

{'1',ni,I}pk(R)

{'2',ni,nr,R}pk(I)

I: Initiator’s identity
R: Responder’s identity

1

2

Protocol to model (Needham-Schroeder-Lowe Public Key Protocol)

Adversary to consider

A Dolev-Yao adversary

• Controls the network
• Can delete, inject, modify and intercept messages
• + can dynamically compromise private keys

Security property to prove

ni and nr have been sent secretly so that the adversary does not know them.

{'3',nr}pk(R)3

pk(I):
Initiator’s
public key
ni: nonce
generated by I

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 63

theory NSLPK3 // theory's name
begin

Needham-Schroeder-Lowe Public Key Protocol

builtins: asymmetric-encryption

aenc (2 params): asymmetric encryption algorithm
adec (2 params): asymmetric decryption algorithm
pk (1 param): public key corresponding to a private key

adec(aenc(m, pk(sk)), sk) is reduced to m

𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

Author: Simon Meier | Date: June 2012
Source: Modeled after the description by Paulson in
Isabelle/HOL/Auth/NS_Public.thy.

mailto:iridcode@gmail.com
https://www.cl.cam.ac.uk/~lp15/
https://isabelle.in.tum.de/library/HOL/HOL-Auth/NS_Public.html

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 64

rule Register_pk:
[Fr(~ltkA)]
-->
[!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

Registering a public key

Creating a PKI𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 65

rule Register_pk:
[Fr(~ltkA)]
-->
[!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

Registering a public key

Creating a PKI𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 66

rule Reveal_ltk:
[!Ltk(A, ltkA)] --[RevLtk(A)]-> [Out(ltkA)]

Dynamically compromising long-term private keys

Modelling the adversary𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

!Ltk(A, ltkA): A’s long-term private-key ltkA database entry was read.

RevLtk(A): states that A’s long-term private-key ltkA was compromised.

Out(ltk): A’s long-term private-key ltkA was sent to the adversary.

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 67

Modelling the protocol𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule I_1:
let m1 = aenc{'1', ~ni, $I}pkR
in
[Fr(~ni), !Pk($R, pkR)]

-->
[Out(m1), St_I_1($I, $R, ~ni)]

rule R_1:
let m1 = aenc{'1', ni, I}pk(ltkR)

m2 = aenc{'2', ni, ~nr, $R}pkI
in
[!Ltk($R, ltkR), In(m1),
!Pk(I, pkI), Fr(~nr)]

--[Running(I, $R, <'init',ni,~nr>)]->
[Out(m2), St_R_1($R, I, ni, ~nr)]

rule I_2:
let m2 = aenc{'2', ni, nr, R}pk(ltkI)

m3 = aenc{'3', nr}pkR
in
[St_I_1(I, R, ni), !Ltk(I, ltkI),
In(m2), !Pk(R, pkR)]

--[Commit(I, R, <'init',ni,nr>),
Running(R, I, <'resp',ni,nr>)]->

[Out(m3), Secret(I,R,nr), Secret(I,R,ni)]

rule R_2:
[St_R_1(R, I, ni, nr), !Ltk(R, ltkR),
In(aenc{'3', nr}pk(ltkR))]

--[Commit(R, I, <'resp',ni,nr>)]->
[Secret(R,I,nr), Secret(R,I,ni)]

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 68

Writing security properties𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule Secrecy_claim:
[Secret(A, B, m)] --[Secret(A, B, m)]-> []

lemma nonce_secrecy:
" /* It cannot be that */
not(

Ex A B s #i.
/* somebody claims to have setup a shared secret, */
Secret(A, B, s) @ i
/* but the adversary knows it */

& (Ex #j. K(s) @ j)
/* without having performed a long-term key reveal. */

& not (Ex #r. RevLtk(A) @ r)
& not (Ex #r. RevLtk(B) @ r)
)"

Running Tamarin

Opening the theory

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 69

tamarin-prover interactive NSLPK3.spthy

Theory available at: https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy
http://127.0.0.1:3001/

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 70

For some rules: Tamarin is unable to
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof
generation ⚠

mitigation

sources lemmas

modelling tricks

auto-sources

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 71

Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 72

Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)

Represent steps where the adversary
composes values

indicates an ordering constraint deduced
from a fresh value: since fresh values are

unique, all rule instances using a fresh value

must appear after the instance that created
the value.

Represents steps where the
adversary extracts value from a

message he received.

Represents an ordering
constraint stemming from

formulas, for example

from the current lemma or a
restriction.

Represents the origins of
protocol facts (linear/persistent

facts)

Partial deconstructions

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 73

Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)

Partial deconstructions

Possibility: Adversary can derive any

fresh term ~t.1 with this rule I_2.

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 74

…

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 75

…

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 76

a

c

…

Output of I_2 decrypted by the

adversary…

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 77

a

b

…

Output of I_2 decrypted by the

adversary…

…so adversary needs the
key, from the output of
I_2, which is decrypted
by the adversary…

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 78

a

b

c

…

…

Output of I_2 decrypted by the

adversary…

…from the key that comes from c…

…so adversary needs the
key, from the output of
I_2, which is decrypted
by the adversary…

Partial Deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 79

a

b

c

…

…

Output of I_2 decrypted by the

adversary…

…from the key that comes from c…

…so adversary needs the
key, from the output of
I_2, which is decrypted
by the adversary…

The key does not come from I_2,

but Tamarin is unable to get this

information. The proof will not

terminate.

Get rid of partial deconstructions

The sources lemmas approach

Sources lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 81

Adding some action facts𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule I_1:
let m1 = aenc{'1', ~ni, $I}pkR
in
[Fr(~ni), !Pk($R, pkR)]

--[OUT_I_1(m1)]->
[Out(m1), St_I_1($I, $R, ~ni)]

rule R_1:
let m1 = aenc{'1', ni, I}pk(ltkR)

m2 = aenc{'2', ni, ~nr, $R}pkI
in
[!Ltk($R, ltkR), In(m1),
!Pk(I, pkI), Fr(~nr)]

--[IN_R_1_ni(ni, m1), OUT_R_1(m2),
Running(I, $R, <'init',ni,~nr>)]->

[Out(m2), St_R_1($R, I, ni, ~nr)]

rule I_2:
let m2 = aenc{'2', ni, nr, R}pk(ltkI)

m3 = aenc{'3', nr}pkR
in
[St_I_1(I, R, ni), !Ltk(I, ltkI),
In(m2), !Pk(R, pkR)]

--[IN_I_2_nr(nr, m2),
Commit(I, R, <'init',ni,nr>),
Running(R, I, <'resp',ni,nr>)]->

[Out(m3), Secret(I,R,nr), Secret(I,R,ni)]

rule R_2:
[St_R_1(R, I, ni, nr), !Ltk(R, ltkR),
In(aenc{'3', nr}pk(ltkR))]

--[Commit(R, I, <'resp',ni,nr>)]->
[Secret(R,I,nr), Secret(R,I,ni)]

Sources lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 82

Adding the sources
lemma𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

lemma types [sources]:
" (All ni m1 #i.

IN_R_1_ni(ni, m1) @ i
==>
((Ex #j. KU(ni) @ j & j < i)
| (Ex #j. OUT_I_1(m1) @ j)
)

)
& (All nr m2 #i.

IN_I_2_nr(nr, m2) @ i
==>
((Ex #j. KU(nr) @ j & j < i)
| (Ex #j. OUT_R_1(m2) @ j)
)

)
"

Precomputation
phase

Sources lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 83

Proving the sources lemma and the secrecy property𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

DEMO

Get rid of partial deconstructions

The auto-sources approach

Auto-sources lemmas

Opening the theory with the --auto-sources option

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 85

tamarin-prover interactive --auto-sources NSLPK3.spthy

Theory available at: https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

Simon Meier, Advancing automated security protocol verification, PhD Thesis, ETH Zürich, Switzerland, 2013. doi: 10.3929/ethz-a-009790675.

Véronique Cortier, Stéphanie Delaune, Jannik Dreier, Elise Klein. Automatic generation of sources lemmas in TAMARIN: towards automatic proofs of
security protocols. Journal of Computer Security, 2022, 30 (4), pp.573-598. ⟨10.3233/JCS-210053⟩. ⟨hal-03767104⟩

https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy
http://127.0.0.1:3001/
https://doi.org/10.3929/ethz-a-009790675
https://dx.doi.org/10.3233/JCS-210053
https://hal.science/hal-03767104

Auto-sources lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 86

Other ways to remove partial deconstructions

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 87

Modelling tricks

⚠ Variants⚠

More info at: https://tamarin-prover.com/manual/master/book/009_precomputation.html

https://tamarin-prover.com/manual/master/book/009_precomputation.html#modelling-tricks-to-mitigate-partial-deconstructions
https://groups.google.com/g/tamarin-prover/c/irq09b70WS8/m/-QdV1j6EAQAJ
https://tamarin-prover.com/manual/master/book/009_precomputation.html

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 88

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Resources materials

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 89

Website: https://tamarin-prover.com/

User manual: https://tamarin-prover.com/manual/

Teaching materials: https://github.com/tamarin-prover/teaching

Google Groups: https://groups.google.com/g/tamarin-prover

Source code: https://github.com/tamarin-prover/tamarin-prover

Research materials: https://tamarin-prover.com#research_papers_and_theses

https://tamarin-prover.com/
https://tamarin-prover.com/manual/
https://github.com/tamarin-prover/teaching
https://groups.google.com/g/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
https://tamarin-prover.com/#research_papers_and_theses

Thank you for your attention

Questions?

Outline

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 91

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Appendix A1 – Foundations of Tamarin

Appendix A1 – Foundations of Tamarin

Foundations of Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 93

𝐸: an equational theory that defines cryptographic operators
𝑅: a protocol
𝜑: a formula that define a trace property

Validity or satisfiability of 𝜑 for the traces of 𝑅 modulo 𝐸.

Validity checking reduced to checking the satisfiability of the negated formula.

S. Meier, Advancing automated security protocol verification, PhD Thesis, ETH Zürich, Switzerland, 2013. doi: 10.3929/ethz-a-009790675.

B. Schmidt, Formal analysis of key exchange protocols and physical protocol , PhD Thesis, ETH Zürich, 2012. doi: 10.3929/ethz-a-009898924.

H. Comon-Lundh and S. Delaune, The Finite Variant Property: How to Get Rid of Some Algebraic Properties, Term Rewriting and Applications,
J. Giesl, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 294–307. doi: 10.1007/978-3-540-32033-3_22.
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf

V. Cortier, S. Delaune, J. Dreier, and E. Klein, Automatic generation of sources lemmas in Tamarin: Towards automatic proofs of security
protocols, JCS, vol. 30, no. 4, pp. 573–598, 2022, doi: 10.3233/JCS-210053. https://hal.science/hal-03767104/



https://tamarin-prover.github.io/
https://doi.org/10.3929/ethz-a-009790675
https://doi.org/10.3929/ethz-a-009898924
https://doi.org/10.1007/978-3-540-32033-3_22
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf
https://doi.org/10.3233/JCS-210053
https://hal.science/hal-03767104/

Appendix A2 – Simple Encrypted Communication
Client authentication lemmas

// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:

[!Ltk($S, ~ltkS) // lookup the private-key
, In(request) // receive a request
]

--[AnswerRequest($S, adec(request, ~ltkS))]->
[Out(h(adec(request, ~ltkS)))] // Return the hash of the

// decrypted request.

Appendix A2 – Simple Encrypted Communication
Client authentication lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 95

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – server side

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

-- [ACTIONFACT] ->: facts that do not
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending (resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

AnswerRequest($S, adec(request, ~ltkS)): Logging of the session-
key setup requests.

Client’s authentication prop.



Appendix A2 – Simple Encrypted Communication
Client authentication lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

96

lemma Client_auth:
" /* For all session keys 'k' setup by clients with a server 'S' */
(All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

((Ex #a. AnswerRequest(S, k) @ a)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

Client point of view – Authentication property

Security properties are defined
over traces of the action facts of
a protocol execution.

∀S,k,i. (SessKeyC(S,k) @ i) ⇒ (
(∃a. AnswerRequest(S,k) @ a)
∨
(∃r. LtkReveal(S) @ r ∧ r < i)

)

i < j: temporal ordering/timepoint
ordering

True if it holds on all traces

Writing security properties



Appendix A2 – Simple Encrypted Communication
Client authentication lemmas

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

97

lemma Client_auth_injective:
" /* For all session keys 'k' setup by clients with a server 'S' */
(All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

((Ex #a. AnswerRequest(S, k) @ a
/* and there is no other client that had the same request */
& (All #j. SessKeyC(S, k) @ #j ==> #i = #j)

)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

Client point of view – Injective authentication property based on uniqueness

Security properties are defined
over traces of the action facts of
a protocol execution.

∀S,k,i. (SessKeyC(S,k) @ i) ⇒ (
(∃a,j. AnswerRequest(S,k) @ a

∧ SessKeyC(S,k) @ j
∧ i < j

)
∨
(∃r. LtkReveal(S) @ r

∧ r < i
)

)

True if it holds on all traces

Writing security properties



Appendix A3 – Message theory (detailed)

Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 99

Adversary
User-defined or from the used built-in
functions.

+ pair, fst, snd /arity

To create
pairs

To access
1st part of

pairs

2nd part
of pairs

Shorthand using < >

e.g. snd(<x.1, x.2>)

automatically imported



Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 100

Adversary

Describe the adversary’s applicable
functions.

If adv. knows x…
…adv. can compute h(x).



Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 101

Adversary

Describe the adversary’s applicable
functions.

If adv. knows x (!KU(x))…
…adv. can compute h(x)
(!KU(h(x)).

--[(!KU(h(x))]-> :
security properties are defined over
traces of the action facts (need to be
recorded).



Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 102

Adversary

Describe the adversary’s
extractable terms from
larger terms by using
functions.



Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 103

Adversary

Describe the adversary’s
extractable terms from
larger terms by using
functions.

If adv. knows <x.1, x.2>…

…adv. can extract x.2 by using the
snd function and the equation
snd(<x.1, x.2>) = x.2.



Appendix A3 – Message theory (detailed)

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 104

Adversary

Describe the adversary’s
extractable terms from
larger terms by using
functions.

If adv. knows <x.1, x.2> (!KD(
<x.1, x.2>))…
…adv. can extract x.2 by using the
snd function and the equation
snd(<x.1, x.2>) = x.2
(!KD(x.2).



Appendix A4 – Built-in features

Appendix A4 – Built-in features

• Hashing

• Asymmetric encryption

• Signing

• Revealing signing

• Symmetric Encryption

• Diffie-Hellmann

• Bilinear Pairing

• XOR

• Multiset

• Reliable channel

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 106

• mun

• one

• exp

• mult

• inv

• pmult

• em

More information at: https://tamarin-prover.github.io/manual/master/book/004_cryptographic-messages.html

https://tamarin-prover.github.io/manual/master/book/004_cryptographic-messages.html

Appendix A5 – Tamarin Logic Syntax

Appendix A5 – Tamarin Logic Syntax

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 108

More information at: https://tamarin-prover.github.io/manual/master/book/007_property-specification.html

Mathematical Name Logic symbol Tamarin symbol

Universal quantification ∀, () All

Existential quantification ∃ Ex

Implication ⇒, →, ⊃ ==>

Conjunction ∧, ·, & &

Disjunction ∨, +, ∥ |

Negation ¬, ~, ! not

Action constraint f @ i, f @ #i

Temporal ordering i < j, #i < #j

Equality between two temporal variables #i = #j

Equality between two message variables x = y

Syntactic sugar for instantiating a predicate
Pred for the terms t1 to tn

Pred(t1,..,tn)

https://tamarin-prover.github.io/manual/master/book/007_property-specification.html

Appendix A6 – Semantics

Appendix A6 – Semantics

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 110

“Colorless green ideas sleep furiously” – Noam Chomsky, 1957 [18]

Semantics?

Syntactically well-formed



Appendix A7 – Decidability

Appendix A7 – Decidability

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 112

But proof of correctness of a security protocol is an undecidable problem…

Decidable logic Determine the truth or falsity of any formula in the logic.

? ? ? ?

“May not terminate as
correctness of security protocol
is an undecidable problem
[13].”

Decidability of a logic ≠ undecidability
problem of the correctness of security
protocol.

We need at least a decidable logic to prove
properties…



References

References

[1] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. 2017. A Comprehensive Symbolic Analysis of TLS 1.3.
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ‘17, New York, NY, USA, 1773–1788. doi:
10.1145/3133956.3134063.
[2] V. Stettler, Formally Analyzing the TLS 1.3 proposal, Bachelor thesis, ETH Zürich, Switzerland, 2016. https://ethz.ch/content/dam/ethz/special-
interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
[3] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, A Comprehensive Symbolic Analysis of TLS 1.3, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ‘17. New York, NY, USA, 2017, pp. 1773–1788. doi: 10.1145/3133956.3134063.
[4] D. Lanzenberger, Formal Analysis of 5G Protocols, Bachelor thesis, ETH Zürich, Switzerland, 2017. https://ethz.ch/content/dam/ethz/special-
interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.pdf
[5] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, A Formal Analysis of 5G Authentication, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18. New York, NY, USA, 2018, pp. 1383–1396. doi: 10.1145/3243734.3243846.
https://arxiv.org/pdf/1806.10360
[6] C. Cremers and M. Dehnel-Wild, Component-based formal analysis of 5G-AKA: channel assumptions and session confusion, Network and Distributed
System Security Symposium (NDSS), 2019, doi: 10.14722/ndss.2019.23394. https://ora.ox.ac.uk/objects/uuid:650ef867-79e1-476d-a602-
e7e28dc64970
[7] C. Cremers, B. Kiesl, and N. Medinger, A Formal Analysis of IEEE 802.11’s WPA2: Countering the Kracks Caused by Cracking the Counters, 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1–17. https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
[8] M. Vanhoef and F. Piessens, Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2, Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17. New York, NY, USA, Oct. 2017, pp. 1313–1328. doi: 10.1145/3133956.3134027.
https://papers.mathyvanhoef.com/ccs2017.pdf
[9] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann, SAPIC+: protocol verifiers of the world, unite!, 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA, USA, 2022, pp. 3935–3952. https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
[10] S. Meier, Advancing automated security protocol verification, PhD Thesis, ETH Zürich, Switzerland, 2013. doi: 10.3929/ethz-a-009790675.
[11] V. Cortier, S. Delaune, J. Dreier, and E. Klein, Automatic generation of sources lemmas in Tamarin: Towards automatic proofs of security protocols,
JCS, vol. 30, no. 4, pp. 573–598, 2022, doi: 10.3233/JCS-210053. https://hal.science/hal-03767104/
[12] B. Schmidt, Formal analysis of key exchange protocols and physical protocol, PhD Thesis, ETH Zürich, 2012. doi: 10.3929/ethz-a-009898924.

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 114

https://doi.org/10.1145/3133956.3134063
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/TLS-1.3_thesis_vincent_stettler.pdf
https://doi.org/10.1145/3133956.3134063
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.pdf
https://doi.org/10.1145/3243734.3243846
https://arxiv.org/pdf/1806.10360
https://doi.org/10.14722/ndss.2019.23394
https://ora.ox.ac.uk/objects/uuid:650ef867-79e1-476d-a602-e7e28dc64970
https://ora.ox.ac.uk/objects/uuid:650ef867-79e1-476d-a602-e7e28dc64970
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://doi.org/10.1145/3133956.3134027
https://papers.mathyvanhoef.com/ccs2017.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://doi.org/10.3929/ethz-a-009790675
https://doi.org/10.3233/JCS-210053
https://hal.science/hal-03767104/
https://doi.org/10.3929/ethz-a-009898924

References

[13] F. Ţiplea, C. Enea, and C. V. Bîrjoveanu, Decidability and Complexity Results for Security Protocols, Verification of Infinite-State Systems with
Applications to Security, 2005. https://www.semanticscholar.org/paper/Decidability-and-Complexity-Results-for-Security-%C5%A2iplea-
Enea/c41604e4eacbb922593848de31576160407b6d4e

[14] D. Jackson, Improving automated protocol verification: real world cryptography, PhD Thesis, University of Oxford, 2020.
https://ora.ox.ac.uk/objects/uuid:28fb885e-5113-438e-bfa2-439babaee563

[15] D. Basin, J. Dreier, and R. Sasse, Automated Symbolic Proofs of Observational Equivalence, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15. New York, NY, 2015, pp. 1144–1155. doi: 10.1145/2810103.2813662. https://hal.science/hal-
01337409v2

[16] H. Comon-Lundh and S. Delaune, The Finite Variant Property: How to Get Rid of Some Algebraic Properties, Term Rewriting and Applications, J.
Giesl, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 294–307. doi: 10.1007/978-3-540-32033-3_22. https://www-
verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf

[17] S. Escobar, R. Sasse, and J. Meseguer, Folding variant narrowing and optimal variant termination, The Journal of Logic and Algebraic
Programming, vol. 81, no. 7, pp. 898–928, 2012, doi: 10.1016/j.jlap.2012.01.002.

[18] N. Chomsky, Syntactic structures. Oxford, Mouton, 1957.

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 115

https://www.semanticscholar.org/paper/Decidability-and-Complexity-Results-for-Security-%C5%A2iplea-Enea/c41604e4eacbb922593848de31576160407b6d4e
https://www.semanticscholar.org/paper/Decidability-and-Complexity-Results-for-Security-%C5%A2iplea-Enea/c41604e4eacbb922593848de31576160407b6d4e
https://ora.ox.ac.uk/objects/uuid:28fb885e-5113-438e-bfa2-439babaee563
https://doi.org/10.1145/2810103.2813662
https://hal.science/hal-01337409v2
https://hal.science/hal-01337409v2
https://doi.org/10.1007/978-3-540-32033-3_22
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf
https://doi.org/10.1016/j.jlap.2012.01.002

	Section par défaut
	Slide 1
	Slide 2
	Slide 3
	Slide 4: Tamarin Prover
	Slide 5
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Introduction
	Slide 11: Introduction
	Slide 12
	Slide 13: Simple Encrypted Communication
	Slide 14: Simple Encrypted Communication
	Slide 15: Simple Encrypted Communication
	Slide 16: Simple Encrypted Communication
	Slide 17: Simple Encrypted Communication
	Slide 18: Simple Encrypted Communication
	Slide 19: Simple Encrypted Communication
	Slide 20: Simple Encrypted Communication
	Slide 21: Simple Encrypted Communication
	Slide 22: Simple Encrypted Communication
	Slide 23: Simple Encrypted Communication
	Slide 24: Simple Encrypted Communication
	Slide 25: Simple Encrypted Communication
	Slide 26: Simple Encrypted Communication
	Slide 27: Simple Encrypted Communication
	Slide 28
	Slide 29: Logic
	Slide 30: Logic
	Slide 31: Logic
	Slide 32: Logic
	Slide 33: Logic
	Slide 34: Logic
	Slide 35: Logic
	Slide 36: Logic
	Slide 37: Logic
	Slide 38
	Slide 39: Installation
	Slide 40: Running Tamarin
	Slide 41: Using Tamarin
	Slide 42: Using Tamarin
	Slide 43: Using Tamarin
	Slide 44: Using Tamarin
	Slide 45: Using Tamarin
	Slide 46: Using Tamarin
	Slide 47: Using Tamarin
	Slide 48: Using Tamarin
	Slide 49: Using Tamarin
	Slide 50: Using Tamarin
	Slide 51: Using Tamarin
	Slide 52: Using Tamarin
	Slide 53: Using Tamarin
	Slide 54: Using Tamarin
	Slide 55: Using Tamarin
	Slide 56: Using Tamarin
	Slide 57: Using Tamarin
	Slide 58: Using Tamarin
	Slide 59: Using Tamarin
	Slide 60: Using Tamarin
	Slide 61
	Slide 62: Partial Deconstructions
	Slide 63: Partial Deconstructions
	Slide 64: Partial Deconstructions
	Slide 65: Partial Deconstructions
	Slide 66: Partial Deconstructions
	Slide 67: Partial Deconstructions
	Slide 68: Partial Deconstructions
	Slide 69: Running Tamarin
	Slide 70: Partial Deconstructions
	Slide 71: Partial Deconstructions
	Slide 72: Partial Deconstructions
	Slide 73: Partial Deconstructions
	Slide 74: Partial Deconstructions
	Slide 75: Partial Deconstructions
	Slide 76: Partial Deconstructions
	Slide 77: Partial Deconstructions
	Slide 78: Partial Deconstructions
	Slide 79: Partial Deconstructions
	Slide 80
	Slide 81: Sources lemmas
	Slide 82: Sources lemmas
	Slide 83: Sources lemmas
	Slide 84
	Slide 85: Auto-sources lemmas
	Slide 86: Auto-sources lemmas
	Slide 87: Other ways to remove partial deconstructions
	Slide 88
	Slide 89: Resources materials
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Appendix A1 – Foundations of Tamarin
	Slide 94
	Slide 95: Appendix A2 – Simple Encrypted Communication Client authentication lemmas
	Slide 96: Appendix A2 – Simple Encrypted Communication Client authentication lemmas
	Slide 97: Appendix A2 – Simple Encrypted Communication Client authentication lemmas
	Slide 98
	Slide 99: Appendix A3 – Message theory (detailed)
	Slide 100: Appendix A3 – Message theory (detailed)
	Slide 101: Appendix A3 – Message theory (detailed)
	Slide 102: Appendix A3 – Message theory (detailed)
	Slide 103: Appendix A3 – Message theory (detailed)
	Slide 104: Appendix A3 – Message theory (detailed)
	Slide 105
	Slide 106: Appendix A4 – Built-in features
	Slide 107
	Slide 108: Appendix A5 – Tamarin Logic Syntax
	Slide 109
	Slide 110: Appendix A6 – Semantics
	Slide 111
	Slide 112: Appendix A7 – Decidability
	Slide 113
	Slide 114: References
	Slide 115: References

