
Guillaume Nibert
guillaume.nibert@snowpack.eu

Provingandanalysingsecurity
protocolswith Tamarin Prover
LINCS Network TheoryWorking Group, IMT Palaiseau, France, Wednesday 20th December 2023

Original works:
The Tamarin Team

https://creativecommons.org/licenses/by-nc-sa/4.0/

Adapted Material ӛCreative Commons License

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works: The Tamarin Team 2

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike4.0 International
License. This is an adapted material of the Tamarin
Prover Manual created by The Tamarin Team. You
may reproduceand edit this work with attribution for
all non-commercialpurposes.

https://tamarin-prover.github.io/
https://tamarin-prover.github.io/manual/index.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode#s1a
https://tamarin-prover.github.io/manual/index.html

Outline

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0ςOriginal works: The Tamarin Team 3

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Tamarin Prover

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 4

Open-source model checker for formal verification and analysis of security protocols in the
symbolic model. It was initially developed at the Information Security Institute, ETH Zürich.

Core team: David Basin, Cas Cremers, JannikDreier, Simon Meier, Ralf Sasse, Benedikt Schmidt

Å Cross-platform (Linux, macOS, Windows with WSL)
Å Falsification and unbounded verification

support
Å Diffie-Hellmann exponentiation and XOR

messages support

Å Security protocols specification ĄMultiset rewriting
systems

Å F9DQKAK G> L@= HJGLG;GDK ӑw.r.t. (temporal) first -order
propertiesӒ

Å ProVerif and Deepsecexport [9]

TLS 1.3 [1, 2, 3] 5G authentication [4, 5, 6] IEEE 802.11 WPA2 [7] + patched version against KRACK [8]

https://tamarin-prover.github.io/
https://infsec.ethz.ch/
https://ethz.ch/en.html
https://people.inf.ethz.ch/basin/
https://cispa.de/en/people/cas.cremers
https://www.jannikdreier.net/
mailto:iridcode@gmail.com
https://people.inf.ethz.ch/rsasse/
https://beschmi.net/
https://tamarin-prover.github.io/
https://bblanche.gitlabpages.inria.fr/proverif/
https://deepsec-prover.github.io/

Outline

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0ςOriginal works: The Tamarin Team 5

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 6

Symbolicmodeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Specification of
ǘƘŜ ǇǊƻǘƻŎƻƭΩǎ

properties

Initiator

Responder

Trusted key server

Proof that satisfies
the properties.

Å Can be automatically
ŎƻƴǎǘǊǳŎǘŜŘΧ

Å including an arbitrary number
of protocol instancesrunning in
parallelΧ

Å while taking into account the
ŀŘǾŜǊǎŀǊȅΩǎ ŀŎǘƛƻƴǎΦ

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 7

Symbolicmodeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Initiator

Responder

Trusted key server

Multiset rewriting rules Ą labeled transition system

Symbolic representation of:
ÅL@= 9<N=JK9JQӐK CFGOD=<?=
Å the messages on the network
Å information about freshly generated values
ÅL@= HJGLG;GDӐK KL9L=

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 8

Symbolicmodeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Initiator

Responder

Trusted key server

Interactions between :&

Å Updating network messages

Å Generating new messages

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 9

Symbolicmodeling / analysis of security protocols

Input Output

Specification of
ǘƘŜ ǇǊƻǘƻŎƻƭΩǎ

properties

ĄTrace properties

Tracesof the transition system

or

Observational equivalence of 2 transition systems [15]

reasoning

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 10

Symbolicmodeling / analysis of security protocols

Input Output

Proof that satisfies
the properties.

Å Can be automatically
ŎƻƴǎǘǊǳŎǘŜŘΧ

Å including an arbitrary number
of protocol instancesrunning in
parallelΧ

Å while taking into account the
ŀŘǾŜǊǎŀǊȅΩǎ ŀŎǘƛƻƴǎΦ

Automated mode: deduction and equational reasoning
with heuristics.
- Termination: proof or correctness or counterexample.
- May not terminate as correctness of security protocol
is an undecidable problem [13].

Interactive mode : explore proof states, attack graphs
Ą combine manual proof guidance & automated mode.

Introduction

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 11

Symbolicmodeling / analysis of security protocols

Input Output

Security protocol
model

Specification of the
adversary

Specification of
ǘƘŜ ǇǊƻǘƻŎƻƭΩǎ

properties

Initiator

Responder

Trusted key server

Proof that satisfies
the properties.

Å Can be automatically
ŎƻƴǎǘǊǳŎǘŜŘΧ

Å including an arbitrary number
of protocol instancesrunning in
parallelΧ

Å while taking into account the
ŀŘǾŜǊǎŀǊȅΩǎ ŀŎǘƛƻƴǎΦ

Outline

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0ςOriginal works: The Tamarin Team 12

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication

Starting with Tamarin
Multiset rewriting rules
Creating a PKI
Modelling the adversary
Modelling the protocol
Writing a security property
Writing an executability property
Ending the theory

Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 13

Alice
(C)

Bob
(S)

kӆ DA;=ӐK
symmetric key

pkSӆ G:ӐK HM:DA; C=Q
aenc(k, pkS)

h(k)

aenc: asymmetric encryption function
h: hash function

1

2

Protocol to model

Adversary to consider

A Dolev-Yaoadversary

Å Controls the network
Å Can delete, inject, modify and intercept messages
Å + can dynamically compromise private keys

Security property to prove

From Alice point of view, k sent to Bob is not compromised

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 14

theory FirstExample // theory's name
begin

Starting with Tamarin

builtins : hashing , asymmetric - encryption

h (1 param) : a cryptophic
hash function

aenc (2 params) : asymmetric encryption algorithm
adec (2 params) : asymmetric decryption algorithm
pk (1 param) : public key corresponding to a private key

adec(aenc(m, pk(sk)), sk) is reduced to m

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

Authors: Simon Meier, Benedikt Schmidt
Updated by: Jannik Dreier, Ralf Sasse
Date: June 2016

mailto:iridcode@gmail.com
https://beschmi.net/
https://www.jannikdreier.net/
https://people.inf.ethz.ch/rsasse/

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 15

Multiset rewriting rules

RulesGH=J9L=K GF L@= KQKL=EӐK KL9L=ĄMultiset of facts.
Facts: predicatesstoring state information . They appear on the trace.

0MD=ӆ ӑPremiseӒӅ ӑ-->ӒӅ ӑConclusionӒӄ
Execution of a rule:

Å Premise: all facts in the premise are present in the current state .
Å -->execution of the rule.
Å Conclusion: facts in the conclusion are added to the state , those from the premise are

removed.

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 16

RulesGH=J9L=K GF L@= KQKL=EӐK KL9L=ĄMultiset of facts.
Facts: predicatesstoring state information .

0MD=ӆ ӑPremiseӒӅ ӑ-->ӒӅ ӑConclusionӒӄ
Execution of a rule:

Å Premise: all facts in the premise are present in the current state .
Å -->execution of the rule.
Å Conclusion: facts in the conclusion are added to the state , those from the premise are

removed.

Creating a PKI

rule Register_pk :
[Fr (~ltk)]

-- >
[! Ltk ($A, ~ltk), ! Pk($A, pk(~ltk))]

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Fr : built-in fact ,
denotes a freshly
generated name. For
modelling nonces/keys.

Registering a public key Special built -in Fr fact Variable prefixes

F(t1,..., tn) with terms ti and a fixed arity n.

$9;LKӐ 29E9JAF J=HJ=K=FL9LAGF

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 17

rule Register_pk :
[Fr (~ltk)]

-- >
[! Ltk ($A, ~ltk), ! Pk($A, pk(~ltk))]

Registering a public key String constant

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Variable prefixes

'c' denotes a public
name in pub, global
constant.

Generation of a fresh name ~ltk (private key) and choice of a public name A(non-deterministically) which
corresponds to the agent associated with the newly created key-pair.

! Ltk ($A, ~ltk) : association of agent Aand its private key ~ltk
! Pk($A, pk(~ltk)) : association of agent Aand its public key pk(~ltk)

! denotes the persistence
of a fact.

Persistence

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ
Creating a PKI

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 18

rule Get_pk:
[! Pk(A, pubkey)]

-- >
[Out(pubkey)]

Allowing an adversary to get any
public key

The public key is read from the public-key database and sent to the network using
the built-in fact Out.

Out/ In denotes a party sending(resp.
receiving) a message to (from) the untrusted
network (Dolev-Yao). Only right-hand(left-
hand) of a multiset rewrite rule.

Out/ In special built -in facts

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

F
a

ct
s

F(t1,..., tn) with terms ti
and a fixed arity n.

Fr : built-in fact , denotes a
freshly generated name. For
modelling nonces/keys.

V
a

ri
a

b
le

s

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 19

rule Reveal_ltk :
[! Ltk (A, ltk)]

-- [LtkReveal (A)] - >
[Out(ltk)]

Dynamically compromising long-
term private keys

! Ltk (A, ltk) : AӐK DGF?-term private-key ltk database entry was read.

LtkReveal (A) : states that AӐK DGF?-term private-key ltk was compromised.

Out(ltk) : AӐK DGF?-term private-key ltk was sent to the adversary.

-- [ACTIONFACT] - >: facts that do not
appear in state, but only on the trace.

Located within the arrow.

Action facts

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

F(t1,..., tn) with terms ti
and a fixed arity n.

Fr : built-in fact , denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending(resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

// Start a new thread executing the client role, choosing the server
// non - deterministically.
rule Client_1 :

[Fr (~k) // choose fresh key
, ! Pk($S, pkS) // lookup public - key of server
]

-- >
[Client_1 ($S, ~k) // Store server and key for next step of thread
, Out(aenc(~k, pkS)) // Send the encrypted session key to the server
]

rule Client_2 :
[Client_1 (S, k) // Retrieve server & session key from previous step
, In (h(k)) // Receive hashed session key from network
]

-- [SessKeyC(S, k)] - > // State that the session key 'k'
[] // was setup with server 'S'

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ
Modelling the protocol ӛclient side

20

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

-- [ACTIONFACT] - >: facts that do not
appear in state, but only on the trace.
Located within the arrow.

F(t1,..., tn) with terms ti
and a fixed arity n.

Fr : built-in fact , denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending(resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

// A server thread answering in one - step to a session - key setup request from
// some client.
rule Serv_1 :

[! Ltk ($S, ~ltkS) // lookup the private - key
, In (request)] // receive a request
-- >

[Out(h(adec(request, ~ltkS)))] // Return the hash of the
// decrypted request.

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ
Modelling the protocol ӛserver side

21

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in
pub, global constant.

Reminder

! denotes the persistence of a
fact.

-- [ACTIONFACT] - >: facts that do not
appear in state, but only on the trace.
Located within the arrow.

F(t1,..., tn) with terms ti
and a fixed arity n.

Fr : built-in fact , denotes a
freshly generated name. For
modelling nonces/keys.

Out/In denotes a party sending(resp.
receiving) a message to (from) the
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

Appendix A2:
Authentication

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

22

lemma

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

23

lemma

lemma Client_session_key_secrecy :
" /* It cannot be that a */

not (
Ex S k #i #j .

/* client has set up a session key 'k' with a server'S ' */
SessKeyC(S, k) @#i
/* and the adversary knows 'k' */

& K(k) @#j
/* without having performed a long - term key reveal on 'S'. */

& not (Ex #r . LtkReveal (S) @r)
)

"

Client point of view ӛSession key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

24

lemma

lemma Client_session_key_secrecy :
" /* It cannot be that a */

not (
Ex S k #i #j .

/* client has set up a session key 'k' with a server'S ' */
SessKeyC(S, k) @#i
/* and the adversary knows 'k' */

& K(k) @#j
/* without having performed a long - term key reveal on 'S'. */

& not (Ex #r . LtkReveal (S) @r)
)

"

Client point of view ӛSession key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

f@i : predicate symbol
representing a fact occurring
at timepoint i (position i in
the trace).

0ÒÅÄƽÔʦƗƛƗÔÎƾ: syntactic
sugar, instantiation of a
predicate for the terms t1 to
tn .

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

25

lemma

lemma Client_session_key_secrecy :
" /* It cannot be that a */

not (
Ex S k #i #j .

/* client has set up a session key 'k' with a server'S ' */
SessKeyC(S, k) @#i
/* and the adversary knows 'k' */

& K(k) @#j
/* without having performed a long - term key reveal on 'S'. */

& not (Ex #r . LtkReveal (S) @r)
)

"

Client point of view ӛSession key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

Sɱ,k,i,j.
SessKeyC(S,k) @ i᷈
+ Ë ͽ Ê ᷈
ᶬÒȢ LtkReveal(S) @ r)

)

f@i : predicate symbol
representing a fact occurring
at timepoint i (position i in
the trace).

0ÒÅÄƽÔʦƗƛƗÔÎƾ: syntactic
sugar, instantiation of a
predicate for the terms t1 to
tn .

Guarded fragment of a many-sorted first -order logic with a sort for timepoints.

True if it holds on all traces

Writing a security property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

26

lemma Client_session_key_honest_setup :
exists - trace
" Ex S k #i .

SessKeyC(S, k) @#i
& not (Ex #r . LtkReveal (S) @r)

"

Client point of view - Model executability property

Security properties are defined
over traces of the action facts of
a protocol execution.

Sɱ,k,i. (
SessKeyC(S,k) @ i
᷈ ᶬÒȢ LtkReveal(S) @ r)

)

True if there exists a trace on which it holds

exists - trace keyword

Writing an executability property

Simple Encrypted Communication

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team

ὅ O ὛȡὯ

Ὓ O ὅȡὬὯ

27

end

Ending the theory

Outline

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0ςOriginal works: The Tamarin Team 28

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first -order logic with a sort for timepoints
Installing & Using Tamarin
Partial deconstructions
Resources materials
Appendices
References

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 29

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??
Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or falseӅ KM;@ 9K ӎAL AK J9AFAF?ӎ GJ ӑғỪғữҏҎӎӄ

Symbols are the syntactic structures of a formal language used to illustrate ideas, concepts or abstractions.

A formula (or well-formed formula) is syntactic structure composed of a finite sequence of symbols.

Aformal language is a syntactic structure (entity) composed of a set of finite strings of symbols (wordsthat are
well-formed formulas).

Syntax is the study of the formal rules that define how logical expressions are constructed from symbolsand
logical connectors.

Components of a propositional logic language:
Å a set of primitivesymbols (known as variablesӅ 9LGEA; >GJEMD9 GJ HJGHGKALAGF D=LL=JKӈӧ
Å a set of operatorsymbols (logical connectives; ᷈ȟ᷉ױȟױᴼȟ ᴾȟ ȟױṶȟȣ)

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 30

Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or falseӅ KM;@ 9K ӑAL AK J9AFAF?Ӓ GJ ӑғỪғữҏҎӎӄ

Components of a propositional logic language:
Å a set of primitivesymbols (known as variablesӅ 9LGEA; >GJEMD9 GJ HJGHGKALAGF D=LL=JKӈӧ
Å a set of operatorsymbols (logical connectives; ᷈ȟ᷉ױȟױᴼȟ ᴾȟ ȟױṶȟȣ)

What is it for?

Creatingproof systems
(i.e. a formal system, which
modelsa language)

Natural deduction system

Simple axiom system

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 31

First-order logic (First-order predicate calculus): extends propositional logic by adding predicates and two
quantifiers .

Predicate: symbol representing a relation or a property. E.g. Equal is the symbol of the Equal(a,b) formula where
aand b are elements from the same interpretation domain. Here the arity of the predicate is 2. = could be another
KQE:GD LG := MK=<ӈ

Quantifiers: ᶅ and ɱ .

Components of a first -order logic language:
Å a set of primitivesymbols (known as variablesӅ 9LGEA; >GJEMD9 GJ HJGHGKALAGF D=LL=JKӈӧ
Å a set of operatorsymbols (logical connectives; ᷈ȟ᷉ױȟױᴼȟ ᴾȟ ȟױṶȟȣ)
Å a set of predicatesymbols
Å a set of quantifiersymbols (ᶪȟ ᶬ)

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 32

Many-sorted first-order logic (typed first-order logic): extends first -order logicby allowing variables to have
different sorts (in different domains).

E.g. SessKeyC(S, k) is the predicate symbol of the SessKeyC(S, k) formula where Sand k are elements from
different interpretation domains.

ӑOAL@ 9sort for timepointsӒrefer to temporal logic a branch of modal logic.

Modal logic deals with the concept of necessity and possibility:
Å Temporal logic: type of modal logic that deals with the concepts of time and temporal relations

(necessity/possibilityof a predicate being true at time t).

Components of a many-sorted first -order logic with sort for timepoints language:
Å a set of primitivesymbols (known as variables, atomic formula or proposition letters where primitive
N9JA9:D=K :=DGF? LG <A>>=J=FL AFL=JHJ=L9LAGF <GE9AFKӈӧ

Å a set of operatorsymbols (logical connectives; ᷈ȟ᷉ױȟױᴼȟ ᴾȟ ȟױṶȟȣ)
Å a set of predicatesymbols
Å a set of quantifiersymbols (ᶪȟ ᶬ)

Guarded fragment of a many-sorted first -order logic with a sort for timepoints . ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 33

Fragment (from a language): subset of the original language by applying it syntax restrictions .

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 34

Fragment (from a language): subset of the original language by applying it syntax restrictions .

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

ᶪØ 0 Ø ᴼ 1 Ø ᶪØ 1 Ø

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 35

Fragment (from a language): subset of the original language by applying it syntax restrictions .

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

ᶪØ 0 Ø ᴼ 1 Ø ᶪØ 1 Ø

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 36

Fragment (from a language): subset of the original language by applying it syntax restrictions .

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

ᶪØ 0 Ø ᴼ 1 Ø ᶪØ 1 Ø

Decidability of the logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 37

Fragment (from a language): subset of the original language by applying it syntax restrictions .

Components of a guarded fragment of a many-sorted first -order logic with sort for timepoints language:
Å a set of primitivesymbols (known as variables, atomic formula or proposition letters where primitive
N9JA9:D=K :=DGF? LG <A>>=J=FL AFL=JHJ=L9LAGF <GE9AFKӈӧ

Å all quantified variables are guarded by atoms.
Å a set of operatorsymbols (logical connectives; ᷈ȟ᷉ױȟױᴼȟ ᴾȟ ȟױṶȟȣ)
Å a set of predicatesymbols
Å a set of quantifiersymbols (ᶪȟ ᶬ)

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by
atoms (specific properties, facts).

ᶪØ 0 Ø ᴼ 1 Ø ᶪØ 1 Ø

Decidable logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first -order logic with a sort for timepoints. ??

Appendix A6

Appendix A7

Outline

Guillaume Nibert | Proving and analysingsecurity protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0ςOriginal works: The Tamarin Team 38

Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin

Ubuntu installation
Message theory
Multiset rewriting rules
Raw & refined sources
Lemmas: security proof of the Simple Encrypted Communication protocol

Partial deconstructions
Resources materials
Appendices
References

Installation

Ubuntu installation

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 39

Other OSes: https://tamarin-prover.github.io/manual/master/book/002_installation.html

Installing the Homebrew package manager
sudo apt install build - essential procps curl file git

/bin/bash - c "$(curl - fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Installation of Tamarin
brew install tamarin - prover/tap/tamarin - prover

https://tamarin-prover.github.io/manual/master/book/002_installation.html

Running Tamarin

Opening the First example

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 40

tamarin - prover interactive FirstExample.spthy

First example available at: https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy
http://127.0.0.1:3001/

Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 ςOriginal works:The Tamarin Team 41

