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Open-source model checker for formal verification and analysis of security protocols in the 
symbolic model. It was initially developed at the Information Security Institute, ETH Zürich.

Core team: David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, Benedikt Schmidt

• Cross-platform (Linux, macOS, Windows with WSL)
• Falsification and unbounded verification 

support
• Diffie-Hellmann exponentiation and XOR

messages support

• Security protocols specification →Multiset rewriting 
systems

• Analysis of the protocols “w.r.t. (temporal) first-order 
properties”

• ProVerif and Deepsec export [9]

TLS 1.3 [1, 2, 3] 5G authentication [4, 5, 6] IEEE 802.11 WPA2 [7] + patched version against KRACK [8]

https://tamarin-prover.github.io/
https://infsec.ethz.ch/
https://ethz.ch/en.html
https://people.inf.ethz.ch/basin/
https://cispa.de/en/people/cas.cremers
https://www.jannikdreier.net/
mailto:iridcode@gmail.com
https://people.inf.ethz.ch/rsasse/
https://beschmi.net/
https://tamarin-prover.github.io/
https://bblanche.gitlabpages.inria.fr/proverif/
https://deepsec-prover.github.io/
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Symbolic modeling / analysis of security protocols

Input Output

Security protocol 
model

Specification of the 
adversary

Specification of
the protocol’s 

properties

Initiator

Responder

Trusted key server

Proof that satisfies
the properties.

• Can be automatically
constructed…

• including an arbitrary number 
of protocol instances running in 
parallel…

• while taking into account the 
adversary’s actions.
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Symbolic modeling / analysis of security protocols

Input Output

Security protocol 
model

Specification of the 
adversary

Initiator

Responder

Trusted key server

Multiset rewriting rules → labeled transition system

Symbolic representation of:
• the adversary’s knowledge
• the messages on the network
• information about freshly generated values
• the protocol’s state
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Symbolic modeling / analysis of security protocols

Input Output

Security protocol 
model

Specification of the 
adversary

Initiator

Responder

Trusted key server

Interactions between :&

• Updating network messages

• Generating new messages
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Symbolic modeling / analysis of security protocols

Input Output

Specification of
the protocol’s 

properties

→ Trace properties

Traces of the transition system

or

Observational equivalence of 2 transition systems [15]

reasoning
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Symbolic modeling / analysis of security protocols

Input Output

Proof that satisfies
the properties.

• Can be automatically
constructed…

• including an arbitrary number 
of protocol instances running in 
parallel…

• while taking into account the 
adversary’s actions.

Automated mode: deduction and equational reasoning 
with heuristics.
- Termination: proof or correctness or counterexample.
- May not terminate as correctness of security protocol 

is an undecidable problem [13].

Interactive mode: explore proof states, attack graphs 
→ combine manual proof guidance & automated mode.
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Symbolic modeling / analysis of security protocols

Input Output

Security protocol 
model

Specification of the 
adversary

Specification of
the protocol’s 
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Initiator

Responder
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the properties.

• Can be automatically
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Alice
(C)

Bob
(S)

k: Alice’s 
symmetric key

pkS: Bob’s public key
aenc(k, pkS)

h(k)

aenc: asymmetric encryption function
h: hash function

1

2

Protocol to model

Adversary to consider

A Dolev-Yao adversary

• Controls the network
• Can delete, inject, modify and intercept messages
• + can dynamically compromise private keys

Security property to prove

From Alice point of view, k sent to Bob is not compromised
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theory FirstExample // theory's name
begin

Starting with Tamarin

builtins: hashing, asymmetric-encryption

h (1 param): a cryptophic
hash function

aenc (2 params): asymmetric encryption algorithm
adec (2 params): asymmetric decryption algorithm
pk (1 param): public key corresponding to a private key

adec(aenc(m, pk(sk)), sk) is reduced to m

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

Authors: Simon Meier, Benedikt Schmidt
Updated by: Jannik Dreier, Ralf Sasse
Date: June 2016

mailto:iridcode@gmail.com
https://beschmi.net/
https://www.jannikdreier.net/
https://people.inf.ethz.ch/rsasse/
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Multiset rewriting rules

Rules operates on the system’s state →Multiset of facts.
Facts: predicates storing state information. They appear on the trace.

Rule: “Premise”, “-->”, “Conclusion”.
Execution of a rule: 

• Premise: all facts in the premise are present in the current state.
• --> execution of the rule.
• Conclusion: facts in the conclusion are added to the state, those from the premise are 

removed.

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
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Rules operates on the system’s state →Multiset of facts.
Facts: predicates storing state information.

Rule: “Premise”, “-->”, “Conclusion”.
Execution of a rule: 

• Premise: all facts in the premise are present in the current state.
• --> execution of the rule.
• Conclusion: facts in the conclusion are added to the state, those from the premise are 

removed.

Creating a PKI

rule Register_pk:
[ Fr(~ltk) ]

-->
[ !Ltk($A, ~ltk), !Pk($A, pk(~ltk)) ]

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Fr: built-in fact, 
denotes a freshly 
generated name. For 
modelling nonces/keys.

Registering a public key Special built-in Fr fact Variable prefixes

F(t1,...,tn) with terms ti and a fixed arity n.

Facts’ Tamarin representation

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
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rule Register_pk:
[ Fr(~ltk) ]

-->
[ !Ltk($A, ~ltk), !Pk($A, pk(~ltk)) ]

Registering a public key String constant

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg

Variable prefixes

'c' denotes a public 
name in pub, global 
constant.

Generation of a fresh name ~ltk (private key) and choice of a public name A (non-deterministically) which 
corresponds to the agent associated with the newly created key-pair.

!Ltk($A, ~ltk) : association of agent A and its private key ~ltk
!Pk($A, pk(~ltk)) : association of agent A and its public key pk(~ltk)

! denotes the persistence 
of a fact.

Persistence

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Creating a PKI
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rule Get_pk:
[ !Pk(A, pubkey) ]

-->
[ Out(pubkey) ]

Allowing an adversary to get any 
public key

The public key is read from the public-key database and sent to the network using 
the built-in fact Out.

Out/In denotes a party sending (resp. 
receiving) a message to (from) the untrusted
network (Dolev-Yao). Only right-hand (left-
hand) of a multiset rewrite rule.

Out/In special built-in facts

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in 
pub, global constant.

Reminder

! denotes the persistence of a 
fact.

F
a

ct
s

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a 
freshly generated name. For 
modelling nonces/keys.

V
a

ri
a

b
le

s
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rule Reveal_ltk:
[ !Ltk(A, ltk) ]

--[ LtkReveal(A) ]->
[ Out(ltk) ]

Dynamically compromising long-
term private keys

!Ltk(A, ltk): A’s long-term private-key ltk database entry was read.

LtkReveal(A): states that A’s long-term private-key ltk was compromised.

Out(ltk): A’s long-term private-key ltk was sent to the adversary.

-- [ACTIONFACT] ->:  facts that do not 
appear in state, but only on the trace.

Located within the arrow.

Action facts

𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the adversary

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in 
pub, global constant.

Reminder

! denotes the persistence of a 
fact.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a 
freshly generated name. For 
modelling nonces/keys.

Out/In denotes a party sending (resp. 
receiving) a message to (from) the 
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s



// Start a new thread executing the client role, choosing the server
// non-deterministically.
rule Client_1:

[ Fr(~k) // choose fresh key
, !Pk($S, pkS) // lookup public-key of server
]

-->
[ Client_1( $S, ~k ) // Store server and key for next step of thread
, Out( aenc(~k, pkS) ) // Send the encrypted session key to the server
]

rule Client_2:
[ Client_1(S, k)  // Retrieve server & session key from previous step
, In( h(k) ) // Receive hashed session key from network
]

--[ SessKeyC( S, k ) ]-> // State that the session key 'k'
[] // was setup with server 'S'

Simple Encrypted Communication
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – client side

20

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in 
pub, global constant.

Reminder

! denotes the persistence of a 
fact.

-- [ACTIONFACT] ->:  facts that do not 
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a 
freshly generated name. For 
modelling nonces/keys.

Out/In denotes a party sending (resp. 
receiving) a message to (from) the 
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s



// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:
[ !Ltk($S, ~ltkS) // lookup the private-key
, In( request ) ]                             // receive a request
-->
[ Out( h(adec(request, ~ltkS)) ) ] // Return the hash of the

// decrypted request.

Simple Encrypted Communication
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – server side

21

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in 
pub, global constant.

Reminder

! denotes the persistence of a 
fact.

-- [ACTIONFACT] ->:  facts that do not 
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a 
freshly generated name. For 
modelling nonces/keys.

Out/In denotes a party sending (resp. 
receiving) a message to (from) the 
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

Appendix A2: 
Authentication
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

22

lemma

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

23

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

Writing a security property
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

24

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

f@i: predicate symbol 
representing a fact occurring 
at timepoint i (position i in 
the trace).

Pred(t1,…,tn): syntactic 
sugar, instantiation of a 
predicate for the terms t1 to 
tn.

Writing a security property
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

25

lemma

lemma Client_session_key_secrecy:
" /* It cannot be that a */
not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

Client point of view – Session key secrecy property

Security properties are defined over traces
of the action facts of a protocol execution.

¬(∃S,k,i,j. 
SessKeyC(S,k) @ i ∧ 
K(k) @ j ∧ 
¬(∃r. LtkReveal(S) @ r)

)

f@i: predicate symbol 
representing a fact occurring 
at timepoint i (position i in 
the trace).

Pred(t1,…,tn): syntactic 
sugar, instantiation of a 
predicate for the terms t1 to 
tn.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints.

True if it holds on all traces

Writing a security property
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

26

lemma Client_session_key_honest_setup:
exists-trace
" Ex S k #i.

SessKeyC(S, k) @ #i
& not(Ex #r. LtkReveal(S) @ r)

"

Client point of view - Model executability property

Security properties are defined 
over traces of the action facts of 
a protocol execution.

∃S,k,i. (
SessKeyC(S,k) @ i
∧ ¬(∃r. LtkReveal(S) @ r)

)

True if there exists a trace on which it holds

exists-trace keyword

Writing an executability property
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)

27

end

Ending the theory
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Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or false, such as "it is raining" or “5+5=10".

Symbols are the syntactic structures of a formal language used to illustrate ideas, concepts or abstractions.

A formula (or well-formed formula) is syntactic structure composed of a finite sequence of symbols.

A formal language is a syntactic structure (entity) composed of a set of finite strings of symbols (words that are 
well-formed formulas).

Syntax is the study of the formal rules that define how logical expressions are constructed from symbols and 
logical connectors.

Components of a propositional logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
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Propositional logic (Propositional calculus): studies propositions and their logical relations (logical connectives).

Proposition: statement that is either true or false, such as “it is raining” or “5+5=10".

Components of a propositional logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})

What is it for?

Creating proof systems 
(i.e. a formal system, which 
models a language)

Natural deduction system

Simple axiom system

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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First-order logic (First-order predicate calculus): extends propositional logic by adding predicates and two 
quantifiers.

Predicate: symbol representing a relation or a property. E.g. Equal is the symbol of the Equal(a,b) formula where 
a and b are elements from the same interpretation domain. Here the arity of the predicate is 2. = could be another 
symbol to be used…

Quantifiers: ∀ and ∃.

Components of a first-order logic language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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Many-sorted first-order logic (typed first-order logic): extends first-order logic by allowing variables to have 
different sorts (in different domains).

E.g. SessKeyC(S, k) is the predicate symbol of the SessKeyC(S, k) formula where S and k are elements from 
different interpretation domains.

“with a sort for timepoints” refer to temporal logic a branch of modal logic.

Modal logic deals with the concept of necessity and possibility:
• Temporal logic: type of modal logic that deals with the concepts of time and temporal relations 

(necessity/possibility of a predicate being true at time t).

Components of a many-sorted first-order logic with sort for timepoints language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters where primitive 

variables belong to different interpretation domains…)
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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Fragment (from a language): subset of the original language by applying it syntax restrictions. 

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by 
atoms (specific properties, facts).

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??



Logic

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 34

Fragment (from a language): subset of the original language by applying it syntax restrictions. 

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by 
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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Fragment (from a language): subset of the original language by applying it syntax restrictions. 

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by 
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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Fragment (from a language): subset of the original language by applying it syntax restrictions. 

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by 
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Decidability of the logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??
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Fragment (from a language): subset of the original language by applying it syntax restrictions. 

Components of a guarded fragment of a many-sorted first-order logic with sort for timepoints language:
• a set of primitive symbols (known as variables, atomic formula or proposition letters where primitive 

variables belong to different interpretation domains…)
• all quantified variables are guarded by atoms.
• a set of operator symbols (logical connectives; {∧, ∨, →, ↔, ¬, ⊥,…})
• a set of predicate symbols
• a set of quantifier symbols ({∀, ∃})

Guarded logic is a family of first-order logics that have the property that all quantified variables are guarded by 
atoms (specific properties, facts).

∀x P(x) → Q(x) ∀x Q(x)

Decidable logic Determine the truth or falsity of any formula in the logic.

Guarded fragment of a many-sorted first-order logic with a sort for timepoints. ??

Appendix A6

Appendix A7
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Tamarin Prover
Introduction
First example: a Simple Encrypted Communication
Guarded fragment of a many-sorted first-order logic with a sort for timepoints
Installing & Using Tamarin

Ubuntu installation
Message theory
Multiset rewriting rules
Raw & refined sources
Lemmas: security proof of the Simple Encrypted Communication protocol

Partial deconstructions
Resources materials
Appendices
References
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Other OSes: https://tamarin-prover.github.io/manual/master/book/002_installation.html

# Installing the Homebrew package manager
sudo apt install build-essential procps curl file git

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

# Installation of Tamarin
brew install tamarin-prover/tap/tamarin-prover

https://tamarin-prover.github.io/manual/master/book/002_installation.html
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tamarin-prover interactive FirstExample.spthy

First example available at: https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

https://tamarin-prover.github.io/manual/master/code/FirstExample.spthy
http://127.0.0.1:3001/
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Return to welcome page

Download the theory + 
partial proofs if exists

Source 
code

Graph 
visualization 
details levelAdversary

Protocol

Sources

Properties to prove
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Adversary
List of symbols of functions, relations, 
constants and equations.

Describe the adversary’s applicable 
functions.

Describe the adversary’s extractable 
terms from larger terms by using 
functions.

Details: Appendix A3
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Offer an interface that 
bridges protocol 
Output/Input and adversary 
deduction. 

Protocol

Appendix A1
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Sources
Automated proof 

generation ☺
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

set of possible sourcesFact
precomp.
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules 

set of possible sourcesFact
precomp.

Fact obtainment
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules 

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

Automated proof 
generation ☺
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules 

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to 
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof 
generation ⚠

Automated proof 
generation ☺
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Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules 

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to 
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof 
generation ⚠

Automated proof 
generation ☺

mitigation

Automated proof 
generation ☺

sources lemmas

modelling tricks

auto-sources



Using Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 52

Sources

Tamarin’s  precomputation phase

Premises inspection of all rules

Facts

Source: combination of rules 

set of possible sourcesFact
precomp.

Fact obtainment

Raw sources Refined sources

For some rules: Tamarin is unable to 
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof 
generation ⚠

Automated proof 
generation ☺

mitigation

Automated proof 
generation ☺

sources lemmas

modelling tricks

auto-sources

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html
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Case distinctions

All possible sources for a fact

Backward search

Avoid re-computations

Instance of the Register_pk
rule (green box)

Called the “sink” of the !Ltk( t.1, t.2 ) fact.

Represents the origins of 

protocol facts 

(linear/persistent facts)
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Requires a 
Register_pk

instance
Requires a 

Register_pk
instance

Represents the origins of protocol facts 
(linear/persistent facts)

Represents steps where the adversary 
extracts value from a message he received.

Represents an ordering constraint stemming 
from formulas, for example

from the current lemma or a restriction.
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Constraint solving

Refining knowledge 
about property & 

protocol

Property holds in 
all possible cases

Counterexample

=
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Constraint solving

Refining knowledge 
about property & 

protocol

Property holds in 
all possible cases

Counterexample

=

or

state: empty
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Searching for an 
execution that contains

a SessKeyC( S, k )
and 

a K( k ) action

The sole method for acquiring 
SessKeyC(S, k) is by using an 
instance of the Client_2 rule. 

K( k ): round box (adversary reasoning)
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Contradiction

Represents the origins of protocol facts 
(linear/persistent facts)

Represents an ordering constraint stemming 
from formulas, for example

from the current lemma or a restriction.
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Green: success
Red: counterexample

Autoprove or 1. 
multiple times.

Represents steps where the adversary extracts value 

from a message he received.

Represents an ordering constraint stemming from 

formulas, for example

from the current lemma or a restriction.

Represents the origins of protocol facts 

(linear/persistent facts)
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Initiator
(I)

Responder
(R)

pk(R): 
Responder’s 
public key
nr: nonce 
generated by R

{'1',ni,I}pk(R)

{'2',ni,nr,R}pk(I)

I: Initiator’s identity
R: Responder’s identity

1

2

Protocol to model (Needham-Schroeder-Lowe Public Key Protocol)

Adversary to consider

A Dolev-Yao adversary

• Controls the network
• Can delete, inject, modify and intercept messages
• + can dynamically compromise private keys

Security property to prove

ni and nr have been sent secretly so that the adversary does not know them.

{'3',nr}pk(R)3

pk(I): 
Initiator’s 
public key
ni: nonce 
generated by I
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theory NSLPK3  // theory's name
begin

Needham-Schroeder-Lowe Public Key Protocol

builtins: asymmetric-encryption

aenc (2 params): asymmetric encryption algorithm
adec (2 params): asymmetric decryption algorithm
pk (1 param): public key corresponding to a private key

adec(aenc(m, pk(sk)), sk) is reduced to m

𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

Author: Simon Meier | Date: June 2012
Source: Modeled after the description by Paulson in 
Isabelle/HOL/Auth/NS_Public.thy.

mailto:iridcode@gmail.com
https://www.cl.cam.ac.uk/~lp15/
https://isabelle.in.tum.de/library/HOL/HOL-Auth/NS_Public.html
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rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA)) ]

Registering a public key

Creating a PKI𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)
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rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA)) ]

Registering a public key

Creating a PKI𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)
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rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ RevLtk(A) ]-> [ Out(ltkA) ]

Dynamically compromising long-term private keys

Modelling the adversary𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

!Ltk(A, ltkA): A’s long-term private-key ltkA database entry was read.

RevLtk(A): states that A’s long-term private-key ltkA was compromised.

Out(ltk): A’s long-term private-key ltkA was sent to the adversary.
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Modelling the protocol𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule I_1:
let m1 = aenc{'1', ~ni, $I}pkR
in
[ Fr(~ni), !Pk($R, pkR) ]

-->
[ Out( m1 ), St_I_1($I, $R, ~ni)]

rule R_1:
let m1 = aenc{'1', ni, I}pk(ltkR)

m2 = aenc{'2', ni, ~nr, $R}pkI
in
[ !Ltk($R, ltkR), In( m1 ),
!Pk(I, pkI), Fr(~nr)]

--[ Running(I, $R, <'init',ni,~nr>)]->
[ Out( m2 ), St_R_1($R, I, ni, ~nr) ]

rule I_2:
let m2 = aenc{'2', ni, nr, R}pk(ltkI)

m3 = aenc{'3', nr}pkR
in
[ St_I_1(I, R, ni), !Ltk(I, ltkI),
In( m2 ), !Pk(R, pkR) ]

--[ Commit(I, R, <'init',ni,nr>),
Running(R, I, <'resp',ni,nr>) ]->

[ Out( m3 ), Secret(I,R,nr), Secret(I,R,ni) ]

rule R_2:
[ St_R_1(R, I, ni, nr), !Ltk(R, ltkR),
In( aenc{'3', nr}pk(ltkR) ) ]

--[ Commit(R, I, <'resp',ni,nr>)]->
[ Secret(R,I,nr), Secret(R,I,ni) ]
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Writing security properties𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule Secrecy_claim:
[ Secret(A, B, m) ] --[ Secret(A, B, m) ]-> []

lemma nonce_secrecy:
" /* It cannot be that */
not(

Ex A B s #i.
/* somebody claims to have setup a shared secret, */
Secret(A, B, s) @ i
/* but the adversary knows it */

& (Ex #j. K(s) @ j)
/* without having performed a long-term key reveal. */

& not (Ex #r. RevLtk(A) @ r)
& not (Ex #r. RevLtk(B) @ r)
)"
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tamarin-prover interactive NSLPK3.spthy

Theory available at: https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy
http://127.0.0.1:3001/
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For some rules: Tamarin is unable to 
get the origin of a fact→ partial
deconstruction left in the raw sources.

Automated proof 
generation ⚠

mitigation

sources lemmas

modelling tricks

auto-sources

https://tamarin-prover.github.io/manual/master/book/009_precomputation.html
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Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)
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Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)

Represent steps where the adversary 
composes values

indicates an ordering constraint deduced 
from a fresh value: since fresh values are 

unique, all rule instances using a fresh value 

must appear after the instance that created 
the value.

Represents steps where the 
adversary extracts value from a 

message he received.

Represents an ordering 
constraint stemming from 

formulas, for example

from the current lemma or a 
restriction.

Represents the origins of 
protocol facts (linear/persistent 

facts)

Partial deconstructions
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Raw sources (11 cases, 12 partial deconstructions left)
Source 5 of 6 / named "I_2" (partial deconstructions)

Partial deconstructions

Possibility: Adversary can derive any 

fresh term ~t.1 with this rule I_2.
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…

Output of I_2 decrypted by the 

adversary…

…from the key that comes from c…

…so adversary needs the 
key, from the output of 
I_2, which is decrypted 
by the adversary…

The key does not come from I_2, 

but Tamarin is unable to get this 

information. The proof will not 

terminate.
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Adding some action facts𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

rule I_1:
let m1 = aenc{'1', ~ni, $I}pkR
in
[ Fr(~ni), !Pk($R, pkR) ]

--[ OUT_I_1(m1) ]->
[ Out( m1 ), St_I_1($I, $R, ~ni)]

rule R_1:
let m1 = aenc{'1', ni, I}pk(ltkR)

m2 = aenc{'2', ni, ~nr, $R}pkI
in
[ !Ltk($R, ltkR), In( m1 ),
!Pk(I, pkI), Fr(~nr)]

--[ IN_R_1_ni( ni, m1 ), OUT_R_1( m2 ),
Running(I, $R, <'init',ni,~nr>)]->

[ Out( m2 ), St_R_1($R, I, ni, ~nr) ]

rule I_2:
let m2 = aenc{'2', ni, nr, R}pk(ltkI)

m3 = aenc{'3', nr}pkR
in
[ St_I_1(I, R, ni), !Ltk(I, ltkI),
In( m2 ), !Pk(R, pkR) ]

--[ IN_I_2_nr( nr, m2),
Commit(I, R, <'init',ni,nr>),
Running(R, I, <'resp',ni,nr>) ]->

[ Out( m3 ), Secret(I,R,nr), Secret(I,R,ni) ]

rule R_2:
[ St_R_1(R, I, ni, nr), !Ltk(R, ltkR),
In( aenc{'3', nr}pk(ltkR) ) ]

--[ Commit(R, I, <'resp',ni,nr>)]->
[ Secret(R,I,nr), Secret(R,I,ni) ]
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Adding the sources 
lemma𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

lemma types [sources]:
" (All ni m1 #i.

IN_R_1_ni( ni, m1) @ i
==>
( (Ex #j. KU(ni) @ j & j < i)
| (Ex #j. OUT_I_1( m1 ) @ j)
)

)
& (All nr m2 #i.

IN_I_2_nr( nr, m2) @ i
==>
( (Ex #j. KU(nr) @ j & j < i)
| (Ex #j. OUT_R_1( m2 ) @ j)
)

)
"

Precomputation 
phase
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Proving the sources lemma and the secrecy property𝐼 → 𝑅: {′1′, 𝑛𝑖, 𝐼}𝑝𝑘(𝑅)

𝑅 → 𝐼: {′2′, 𝑛𝑖, 𝑛𝑟, 𝑅}𝑝𝑘(𝐼)

𝐼 → 𝑅: {′3′, 𝑛𝑟}𝑝𝑘(𝑅)

DEMO
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tamarin-prover interactive --auto-sources NSLPK3.spthy

Theory available at: https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy

Open your favorite web browser and go to http://127.0.0.1:3001

Simon Meier, Advancing automated security protocol verification, PhD Thesis, ETH Zürich, Switzerland, 2013. doi: 10.3929/ethz-a-009790675.

Véronique Cortier, Stéphanie Delaune, Jannik Dreier, Elise Klein. Automatic generation of sources lemmas in TAMARIN: towards automatic proofs of 
security protocols. Journal of Computer Security, 2022, 30 (4), pp.573-598. ⟨10.3233/JCS-210053⟩. ⟨hal-03767104⟩

https://github.com/tamarin-prover/manual/blob/master/code/NSLPK3.spthy
http://127.0.0.1:3001/
https://doi.org/10.3929/ethz-a-009790675
https://dx.doi.org/10.3233/JCS-210053
https://hal.science/hal-03767104
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Modelling tricks

⚠ Variants⚠

More info at: https://tamarin-prover.com/manual/master/book/009_precomputation.html

https://tamarin-prover.com/manual/master/book/009_precomputation.html#modelling-tricks-to-mitigate-partial-deconstructions
https://groups.google.com/g/tamarin-prover/c/irq09b70WS8/m/-QdV1j6EAQAJ
https://tamarin-prover.com/manual/master/book/009_precomputation.html
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Website: https://tamarin-prover.com/

User manual: https://tamarin-prover.com/manual/

Teaching materials: https://github.com/tamarin-prover/teaching

Google Groups: https://groups.google.com/g/tamarin-prover

Source code: https://github.com/tamarin-prover/tamarin-prover

Research materials: https://tamarin-prover.com#research_papers_and_theses

https://tamarin-prover.com/
https://tamarin-prover.com/manual/
https://github.com/tamarin-prover/teaching
https://groups.google.com/g/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
https://tamarin-prover.com/#research_papers_and_theses


Thank you for your attention

Questions?
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Foundations of Tamarin

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 93

𝐸: an equational theory that defines cryptographic operators
𝑅: a protocol
𝜑: a formula that define a trace property

Validity or satisfiability of 𝜑 for the traces of 𝑅 modulo 𝐸.

Validity checking reduced to checking the satisfiability of the negated formula.

S. Meier, Advancing automated security protocol verification, PhD Thesis, ETH Zürich, Switzerland, 2013. doi: 10.3929/ethz-a-009790675.

B. Schmidt, Formal analysis of key exchange protocols and physical protocol , PhD Thesis, ETH Zürich, 2012. doi: 10.3929/ethz-a-009898924.

H. Comon-Lundh and S. Delaune, The Finite Variant Property: How to Get Rid of Some Algebraic Properties, Term Rewriting and Applications, 
J. Giesl, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 294–307. doi: 10.1007/978-3-540-32033-3_22. 
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf

V. Cortier, S. Delaune, J. Dreier, and E. Klein, Automatic generation of sources lemmas in Tamarin: Towards automatic proofs of security 
protocols, JCS, vol. 30, no. 4, pp. 573–598, 2022, doi: 10.3233/JCS-210053. https://hal.science/hal-03767104/



https://tamarin-prover.github.io/
https://doi.org/10.3929/ethz-a-009790675
https://doi.org/10.3929/ethz-a-009898924
https://doi.org/10.1007/978-3-540-32033-3_22
https://www-verimag.imag.fr/~lakhnech/CRYPTO/05-06-PAPIERS-POUR-ETUDIANTS/Crypto-et-Protocoles/rta05-CD.pdf
https://doi.org/10.3233/JCS-210053
https://hal.science/hal-03767104/
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// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:

[ !Ltk($S, ~ltkS) // lookup the private-key
, In( request ) // receive a request
]

--[ AnswerRequest($S, adec(request, ~ltkS)) ]->
[ Out( h(adec(request, ~ltkS)) ) ] // Return the hash of the

// decrypted request.

Appendix A2 – Simple Encrypted Communication
Client authentication lemmas
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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
Modelling the protocol – server side

~x denotes x:fresh
$x denotes x:pub
#i denotes i:temporal
m denotes m:msg
'c' denotes a public name in 
pub, global constant.

Reminder

! denotes the persistence of a 
fact.

-- [ACTIONFACT] ->:  facts that do not 
appear in state, but only on the trace.
Located within the arrow.

F(t1,...,tn) with terms ti
and a fixed arity n.

Fr: built-in fact, denotes a 
freshly generated name. For 
modelling nonces/keys.

Out/In denotes a party sending (resp. 
receiving) a message to (from) the 
untrusted network (Dolev-Yao). Only right-
hand (left-hand) of a multiset rewrite rule.

F
a

ct
s

V
a

ri
a

b
le

s

AnswerRequest($S, adec(request, ~ltkS)): Logging of the session-
key setup requests.

Client’s authentication prop.


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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
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lemma Client_auth:
" /* For all session keys 'k' setup by clients with a server 'S' */
( All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

( (Ex #a. AnswerRequest(S, k) @ a)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

Client point of view – Authentication property 

Security properties are defined 
over traces of the action facts of 
a protocol execution.

∀S,k,i. (SessKeyC(S,k) @ i) ⇒ (
(∃a. AnswerRequest(S,k) @ a) 
∨ 
(∃r. LtkReveal(S) @ r ∧ r < i)

)

i < j: temporal ordering/timepoint 
ordering

True if it holds on all traces

Writing security properties


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𝐶 → 𝑆: {𝑘}𝑝𝑘𝑆

𝑆 → 𝐶: ℎ(𝑘)
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lemma Client_auth_injective:
" /* For all session keys 'k' setup by clients with a server 'S' */
( All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

( (Ex #a. AnswerRequest(S, k) @ a
/* and there is no other client that had the same request */
& (All #j. SessKeyC(S, k) @ #j ==> #i = #j)

)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

Client point of view – Injective authentication property  based on uniqueness

Security properties are defined 
over traces of the action facts of 
a protocol execution.

∀S,k,i. (SessKeyC(S,k) @ i) ⇒ (
(∃a,j. AnswerRequest(S,k) @ a 

∧ SessKeyC(S,k) @ j 
∧ i < j

) 
∨ 
(∃r. LtkReveal(S) @ r 

∧ r < i
)

)

True if it holds on all traces

Writing security properties


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Adversary
User-defined or from the used built-in 
functions.

+ pair, fst, snd /arity

To create 
pairs

To access 
1st part of 

pairs

2nd part 
of pairs

Shorthand using < >

e.g. snd(<x.1, x.2>)

automatically imported


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Adversary

Describe the adversary’s applicable 
functions.

If adv. knows x…
…adv. can compute h(x).


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Adversary

Describe the adversary’s applicable 
functions.

If adv. knows x (!KU( x ))…
…adv. can compute h(x)
(!KU( h( x ) ).

--[(!KU( h( x ) )]-> : 
security properties are defined over 
traces of the action facts (need to be 
recorded).


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Adversary

Describe the adversary’s 
extractable terms from 
larger terms by using 
functions.


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Adversary

Describe the adversary’s 
extractable terms from 
larger terms by using 
functions.

If adv. knows <x.1, x.2>…

…adv. can extract x.2 by using the 
snd function and the equation 
snd(<x.1, x.2>) = x.2.


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Adversary

Describe the adversary’s 
extractable terms from 
larger terms by using 
functions.

If adv. knows <x.1, x.2> (!KD( 
<x.1, x.2> ))…
…adv. can extract x.2 by using the 
snd function and the equation 
snd(<x.1, x.2>) = x.2
(!KD( x.2 ).


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• Hashing

• Asymmetric encryption

• Signing

• Revealing signing

• Symmetric Encryption

• Diffie-Hellmann

• Bilinear Pairing

• XOR

• Multiset

• Reliable channel

Guillaume Nibert | Proving and analysing security protocols with Tamarin Prover | 2023-12-20 | CC BY-NC-SA 4.0 – Original works: The Tamarin Team 106

• mun

• one

• exp

• mult

• inv

• pmult

• em

More information at: https://tamarin-prover.github.io/manual/master/book/004_cryptographic-messages.html

https://tamarin-prover.github.io/manual/master/book/004_cryptographic-messages.html
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More information at: https://tamarin-prover.github.io/manual/master/book/007_property-specification.html

Mathematical Name Logic symbol Tamarin symbol

Universal quantification ∀, () All

Existential quantification ∃ Ex

Implication ⇒, →, ⊃ ==>

Conjunction ∧, ·, & &

Disjunction ∨, +, ∥ |

Negation ¬, ~, ! not

Action constraint f @ i, f @ #i

Temporal ordering i < j, #i < #j

Equality between two temporal variables #i = #j

Equality between two message variables x = y

Syntactic sugar for instantiating a predicate 
Pred for the terms t1 to tn

Pred(t1,..,tn)

https://tamarin-prover.github.io/manual/master/book/007_property-specification.html
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“Colorless green ideas sleep furiously” – Noam Chomsky, 1957 [18]

Semantics?

Syntactically well-formed


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But proof of correctness of a security protocol is an undecidable problem…

Decidable logic Determine the truth or falsity of any formula in the logic.

? ? ? ?

“May not terminate as 
correctness of security protocol 
is an undecidable problem 
[13].”

Decidability of a logic ≠ undecidability 
problem of the correctness of security 
protocol.

We need at least a decidable logic to prove 
properties…


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