In the coming years, we're excited to see our initiatives come to life, making a significant impact on the community and contributing to a safer, more efficient urban environment for everyone. These systems use LED lighting and motion sensors to improve safety for pedestrians, a crucial part of our community. Learn more about Coquitlam Certified Flaggers here We tailor our traffic control plans to fit the unique needs of each area, considering local traffic patterns and peak times. Our clients' feedback highlights the impact of our certified expertise on their projects and daily operations. Our clients trust us because they know we don't cut corners when it comes to safety.
Building on our foundation of professional certifications, we're also experts in advanced traffic management, where we apply our deep knowledge to manage complex traffic situations effectively. Our team of certified professionals is equipped to handle all aspects of traffic control, from planning and permit acquisition to the implementation of the plan on the ground.
We're committed to staying abreast of the latest guidelines and implementing them into our practices. At Safeside Traffic Control Ltd, we offer a comprehensive range of services designed to meet all your traffic management needs. We've implemented clear, visible signage and barriers that guide pedestrians away from danger and toward designated safe paths. Plus, we offer equipment rental for those needing top-quality traffic control gear. That's why we've tailored our services not just to meet the needs of construction sites but also to minimize disruption for the people who call Coquitlam Certified Flaggers home.
Safeside Traffic Control Ltd offers a wide range of traffic management solutions tailored to meet the unique needs of Coquitlam Certified Flaggers's diverse projects. Beyond initial training, we're committed to ongoing education. They reflect our dedication to safety, efficiency, and the highest professional standards, making us a trusted partner in traffic control. Moreover, we've adopted drone technology for aerial surveillance, giving us a bird's eye view of traffic patterns and potential bottlenecks.
Playing a pivotal role in Coquitlam Certified Flaggers's development, we've seen firsthand how professional traffic solutions can drive growth and improve community well-being.
The Coast Salish people were the first to live in this area, and archaeology confirms continuous occupation of the territory for at least 9,000 years. The name Kwikwetlem is said to be derived from a Coast Salish term "kʷikʷəƛ̓əm" meaning "red fish up the river".
s
Through our commitment to excellence in traffic management, we're not just observers but active participants in shaping Coquitlam Certified Flaggers's future, ensuring it remains a great place to live, work, and visit.
We're always on the lookout for potential hazards, ready to act swiftly to prevent incidents before they happen. As the sun rises over Coquitlam Certified Flaggers, casting a golden hue on the bustling construction sites that dot the landscape, we find ourselves reflecting on the critical role Safeside Traffic Control Ltd has played in shaping the city's growing infrastructure. This vigilant attitude towards safety helps us maintain an impeccable record and solidifies our position as Coquitlam Certified Flaggers's leading traffic control service. As we explore our practices and the impact they've had on the community, we invite you to discover how our commitment to excellence is driving change, one project at a time. Plus, we handle all aspects of permit acquisition from local authorities, making the process hassle-free for our clients.
We've equipped our crew with the necessary tools and knowledge to manage emergencies efficiently, minimizing potential disruptions and hazards. Moreover, our team's expertise in utilizing these advanced tools means we can design and implement tailored traffic management plans for each construction site. We're well-versed in the latest traffic control technologies and methodologies. It's this commitment to safety that sets us apart and makes us the trusted choice for traffic control in Coquitlam Certified Flaggers and beyond. Flagging Team Certification
We're deeply involved in the communities where we operate, participating in local events and initiatives that promote safety awareness. Our team is comprised of certified professionals who've undergone extensive training in traffic management and safety protocols. This feedback is especially gratifying, as it underscores our commitment to not just meeting, but enhancing community safety and satisfaction. We've mastered the art of minimizing disruptions while maximizing safety and accessibility.
Our goal is to remain at the forefront of the traffic control industry, ensuring that as Coquitlam Certified Flaggers evolves, its streets remain safe and accessible for everyone. We use wireless communication devices that allow our team to coordinate effortlessly over large areas, ensuring that everyone's on the same page and can respond quickly to any situation. We understand that every project is unique, and we're committed to offering personalized solutions that meet your specific needs. Collaboration with local authorities and stakeholders is key to our success.
We'll also introduce you to our team of certified professionals who are committed to maintaining the highest standards of safety and efficiency on your project. We're not just a service provider; we're your partner in ensuring public safety and efficient traffic flow around the clock.
These advancements aren't just about replacing manual operations with automation; it's about creating a seamless, interconnected system that anticipates and reacts to the dynamic nature of road use.
We're committed to delivering services that protect everyone on the road, because at the end of the day, getting everyone home safely is the ultimate goal. At Safeside Traffic Control Ltd, we're not just about managing traffic; we're about building relationships. Whether it's a large-scale infrastructure project or a smaller urban development, we've got the know-how to keep things moving smoothly. We also consider the timing of the event to ensure our traffic control measures align with peak traffic periods, making adjustments as necessary.
It's our belief that by ensuring the safety and efficiency of our roads, we're contributing to the overall well-being and happiness of Coquitlam Certified Flaggers's residents. We're committed to using the latest technology and equipment to enhance our traffic management strategies.
A pedestrian is a person traveling on foot, whether walking or running.[citation needed] In modern times, the term usually refers to someone walking on a road or pavement (US: sidewalk), but this was not the case historically.[citation needed] Pedestrians may also be wheelchair users or other disabled people who use mobility aids.[1]
The meaning of pedestrian is displayed with the morphemes ped- ('foot') and -ian ('characteristic of').[2] This word is derived from the Latin term pedester ('going on foot') and was first used (in the English language) during the 18th century.[3] It was originally used, and can still be used today, as an adjective meaning plain or dull.[4] However, in this article it takes on its noun form and refers to someone who walks.
The word pedestrian may have been used in middle French in the Recueil des Croniques et Anchiennes Istories de la Grant Bretaigne.[5]
Walking has always been the primary means of human locomotion. The first humans to migrate from Africa, about 60,000 years ago, walked.[6] They walked along the coast of India to reach Australia. They walked across Asia to reach the Americas, and from Central Asia into Europe.
With the advent of the cars at the beginning of the 20th century, the main story is that the cars took over, and "people chose the car", but there were many groups and movements that held on to walking as their preferred means of daily transport and some who organised to promote walking, and to counterbalance the widely-held view that often favoured cars, e.g. as related by Peter Norton.[7]
During the 18th and 19th centuries, pedestrianism (walking) was non a popular spectator sport, just as equestrianism (riding) still is in places. One of the most famous pedestrians of that period was Captain Robert Barclay Allardice, known as "The Celebrated Pedestrian", of Stonehaven in Scotland. His most impressive feat was to walk 1 mile (1.6 km) every hour for 1000 hours, which he achieved between 1 June and 12 July 1809. This feat captured many people's imagination, and around 10,000 people came to watch over the course of the event. During the rest of the 19th century, many people tried to repeat this feat, including Ada Anderson who developed it further and walked a half-mile (800 m) each quarter-hour over the 1000 hours.
Since the 20th century, interest in walking as a sport has dropped. Racewalking is still an Olympic sport, but fails to catch public attention as it did. However major walking feats are still performed, such as the Land's End to John o' Groats walk in the United Kingdom, and the traversal of North America from coast to coast. The first person to walk around the world was Dave Kunst who started his walk traveling east from Waseca, Minnesota on 20 June 1970 and completed his journey on 5 October 1974, when he re-entered the town from the west. These feats are often tied to charitable fundraising and are undertaken, among others, by celebrities such as Sir Jimmy Savile and Ian Botham.
Roads often have a designated footpath for pedestrian traffic, called the sidewalk in North American English, the pavement in British English, and the footpath in Australian and New Zealand English. There are also footpaths not associated with a road; these include urban short cuts and also rural paths used mainly by ramblers, hikers, or hill-walkers. Footpaths in mountainous or forested areas may also be called trails. Pedestrians share some footpaths with horses and bicycles: these paths may be known as bridleways. Other byways used by walkers are also accessible to vehicles. There are also many roads with no footpath. Some modern towns (such as the new suburbs of Peterborough in England) are designed with the network of footpaths and cycle paths almost entirely separate from the road network.
The term trail is also used by the authorities in some countries to mean any footpath that is not attached to a road or street.[8] If such footpaths are in urban environments and are meant for both pedestrians and pedal cyclists, they can be called shared use paths[9] or multi-use paths in general and official usage. нуПЬ
Some shopping streets are for pedestrians only. Some roads have special pedestrian crossings. A bridge solely for pedestrians is a footbridge.
In Britain, regardless of whether there is a footpath, pedestrians have the legal right to use most public roads, excluding motorways and some toll tunnels and bridges such as the Blackwall Tunnel and the Dartford Crossing — although sometimes it may endanger the pedestrian and other road users. The UK Highway Code advises that pedestrians should walk in the opposite direction to oncoming traffic on a road with no footpath.[10]
Indoor pedestrian networks connect the different rooms or spaces of a building. Airports, museums, campuses, hospitals and shopping centres might have tools allowing for the computation of the shortest paths between two destinations. Their increasing availability is due to the complexity of path finding in these facilities.[11] Different mapping tools, such as OpenStreetMap, are extending to indoor spaces.[12]
Pedestrianisation might be considered as a process of removing vehicular traffic from city streets or restricting vehicular access to streets for use by pedestrians, to improve the environment and safety.[13]
Efforts are under way by pedestrian advocacy groups to restore pedestrian access to new developments, especially to counteract newer developments, 20% to 30% of which in the United States do not include footpaths. Some activists advocate large pedestrian zones where only pedestrians, or pedestrians and some non-motorised vehicles, are allowed. Many urbanists have extolled the virtues of pedestrian streets in urban areas. In the US the proportion of households without a car is 8%, but a notable exception is New York City, the only locality in the United States where more than half of all households do not own a car (the figure is even higher in Manhattan, over 75%).[14]
The use of cars for short journeys is officially discouraged in many parts of the world, and construction or separation of dedicated walking routes in city centres receives a high priority in many large cities in Western Europe, often in conjunction with public transport enhancements. In Copenhagen, the world's longest pedestrian shopping area, Strøget, has been developed over the last 40 years, principally due to the work of Danish architect Jan Gehl, a principle of urban design known as copenhagenisation.
Safety is an important issue where cars can cross the pedestrian way. Drivers and pedestrians share some responsibility for improving safety of road users.[15] Road traffic crashes are not inevitable; they are both predictable and preventable.[13]
Key risks for pedestrians are well known. Among the well-documented factors are driver behaviour (including speeding and drunk driving); infrastructure missing facilities (including pavements, crossings and islands); and vehicle designs which are not forgiving to pedestrians struck by a vehicle.[13] The Traffic Injury Research Foundation describes pedestrians as vulnerable road users because they are not protected in the same way as occupants of motor vehicles.[16] There is an increasing focus on pedestrians versus motor vehicles in many countries.[citation needed]
Most pedestrian injuries occur while they are crossing a street.[13] Most crashes involving a pedestrian occur at night.[13] Most pedestrian fatalities are killed by a frontal impact. In such a situation, an adult pedestrian is struck by a car front (for instance, the bumper touches either the leg or knee-joint area), accelerating the lower part of the body forward while "the upper body is rotated and accelerated relative to the car," at which point the pelvis and thorax are hit.[13] Then the head hits the windscreen at the velocity of the striking car. Finally, the victim falls to the ground.[13]
Research has shown that urban crimes, or the mere perception of crimes, severely affect the mental and physical health of pedestrians. Inter-pedestrian behaviour, without the involvement of vehicles, is also a key factor to pedestrian safety.[17]
Some special interest groups consider pedestrian fatalities on American roads a carnage.[18] Five states – Arizona, California, Florida, Georgia and Texas – are the site of 46% of all pedestrian deaths in the country.[18] The advent of SUVs is considered a leading cause;[19] speculation of other factors includes population growth, driver distraction with mobile phones, poor street lighting, alcohol and drugs and speeding.[18]
Cities have had mixed results in addressing pedestrian safety with Vision zero plan: Los Angeles fails while NYC has had success. Nonetheless, in the US, some pedestrians have just 40 seconds to cross a street 10 lanes wide.[18]
Pedestrian fatalities are much more common in accident situations in the European Union than in the United States. In the European Union countries, more than 200,000 pedestrians and cyclists are injured annually.[20] Also, each year, more than 270 000 pedestrians lose their lives on the world's roads.[13] At a global level pedestrians constitute 22% of all road deaths,[13] but might be two-thirds in some countries.[13] Pedestrian fatalities, in 2016, were[needs update] 2.6 per million population in the Netherlands, 4.3 in Sweden, 4.5 in Wales, 5.3 in New Zealand, 6.0 in Germany; 7.1 in the whole United Kingdom, 7.5 in Australia, 8.4 in France, 8.4 in Spain, 9.4 in Italy, 11.1 in Israel, 13 in Japan, 13.8 in Greece, 18.5 in the United States, 22.9 in Poland, and 36.3 in Romania.[21]
| ||
It is well documented that a minor increase in speed might greatly increase the likelihood of a crash, and exacerbate resulting casualties. For this reason, the recommended maximum speed is 30 km/h (20 mph) or 40 km/h (25 mph) in residential and high pedestrian traffic areas, with enforced traffic rules on speed limits and traffic-calming measures.[13]
The design of road and streets plays a key role in pedestrian safety. Roads are too often designed for motorized vehicles, without taking into account pedestrian and bicycle needs. The non-existence of sidewalk and signals increases risk for pedestrians. This defect might more easily be observed on arterial roadways, intersections and fast-speed lanes without adequate attention to pedestrian facilities.[13] For instance, an assessment of roads in countries from many continents shows that 84% of roads are without pedestrian footpaths, while maximum limited speed is greater than 40 km/h.[13]
Among the factors which reduce road safety for pedestrians are wider lanes, roadway widening, and roadways designed for higher speeds and with increased numbers of traffic lanes.[13]
For this reason, some European cities such as Freiburg (Germany) have lowered the speed limit to 30 km/h on 90% of its streets, to reduce risk for its 15 000 people. With such policy, 24% of daily trips are performed by foot, against 28% by bicycles, 20% by public transport and 28% by car. (See Zone 30.)[13]
A similar set of policies to discourage the use of cars and increase safety for pedestrians has been implemented by the Northern European capitals of Oslo and Helsinki. In 2019, this resulted in both cities counting zero pedestrian deaths for the first time.[26]
In Europe, pedestrian fatalities have a seasonal factor, with 6% of annual fatalities occurring in April but 13% (twice more) in December. The rationale for such a change might be complex.[27]
Regular walking is important both for human health and for the natural environment. Frequent exercise such as walking tends to reduce the chance of obesity and related medical problems. In contrast, using a car for short trips tends to contribute both to obesity and via vehicle emissions to climate change: internal combustion engines are more inefficient and highly polluting during their first minutes of operation (engine cold start). General availability of public transportation encourages walking, as it will not, in most cases, take one directly to one's destination.
In Unicode, the hexadecimal code for "pedestrian" is 1F6B6. In XML and HTML, the string 🚶
produces 🚶.[28]
Trail – A path of travel for recreation and/or transportation within a park, natural environment, or designated corridor that is not classified as a highway, road, or street
{{cite journal}}
: Unknown parameter |agency=
ignored (help)
{{cite web}}
: CS1 maint: archived copy as title (link)
This article needs additional citations for verification. (July 2010) |
Safety is the state of being "safe", the condition of being protected from harm or other danger. Safety can also refer to the control of recognized hazards in order to achieve an acceptable level of risk.
The word 'safety' entered the English language in the 14th century.[1] It is derived from Latin salvus, meaning uninjured, in good health, safe.[2]
There are two slightly different meanings of "safety". For example, "home safety" may indicate a building's ability to protect against external harm events (such as weather, home invasion, etc.), or may indicate that its internal installations (such as appliances, stairs, etc.) are safe (not dangerous or harmful) for its inhabitants.
Discussions of safety often include mention of related terms. Security is such a term. With time the definitions between these two have often become interchanged, equated, and frequently appear juxtaposed in the same sentence. Readers are left to conclude whether they comprise a redundancy. This confuses the uniqueness that should be reserved for each by itself. When seen as unique, as we intend here, each term will assume its rightful place in influencing and being influenced by the other.
Safety is the condition of a "steady state" of an organization or place doing what it is supposed to do. "What it is supposed to do" is defined in terms of public codes and standards, associated architectural and engineering designs, corporate vision and mission statements, and operational plans and personnel policies. For any organization, place, or function, large or small, safety is a normative concept. It complies with situation-specific definitions of what is expected and acceptable.[3]
Using this definition, protection from a home's external threats and protection from its internal structural and equipment failures (see Meanings, above) are not two types of safety but rather two aspects of a home's steady state.
In the world of everyday affairs, not all goes as planned. Some entity's steady state is challenged. This is where security science, which is of more recent date, enters. Drawing from the definition of safety, then:
Security is the process or means, physical or human, of delaying, preventing, and otherwise protecting against external or internal, defects, dangers, loss, criminals, and other individuals or actions that threaten, hinder or destroy an organization’s "steady state," and deprive it of its intended purpose for being.
Using this generic definition of safety it is possible to specify the elements of a security program.[3]
Safety can be limited in relation to some guarantee or a standard of insurance to the quality and unharmful function of an object or organization. It is used in order to ensure that the object or organization will do only what it is meant to do.
It is important to realize that safety is relative. Eliminating all risk, if even possible, would be extremely difficult and very expensive. A safe situation is one where risks of injury or property damage are low and manageable.
When something is called safe, this usually means that it is safe within certain reasonable limits and parameters. For example, a medication may be safe, for most people, under most circumstances, if taken in a certain amount.
A choice motivated by safety may have other, unsafe consequences. For example, frail elderly people are sometimes moved out of their homes and into hospitals or skilled nursing homes with the claim that this will improve the person's safety. The safety provided is that daily medications will be supervised, the person will not need to engage in some potentially risky activities such as climbing stairs or cooking, and if the person falls down, someone there will be able to help the person get back up. However, the end result might be decidedly unsafe, including the dangers of transfer trauma, hospital delirium, elder abuse, hospital-acquired infections, depression, anxiety, and even a desire to die.[4]
There is a distinction between products that meet standards, that are safe, and that merely feel safe. The highway safety community uses these terms:[citation needed]
Normative safety is achieved when a product or design meets applicable standards and practices for design and construction or manufacture, regardless of the product's actual safety history.
Substantive or objective safety occurs when the real-world safety history is favorable, whether or not standards are met.
Perceived or subjective safety refers to the users' level of comfort and perception of risk, without consideration of standards or safety history. For example, traffic signals are perceived as safe, yet under some circumstances, they can increase traffic crashes at an intersection. Traffic roundabouts have a generally favorable safety record[5] yet often make drivers nervous.
Low perceived safety can have costs. For example, after the 9/11 attacks in 2001, many people chose to drive rather than fly, despite the fact that, even counting terrorist attacks, flying is safer than driving. Perceived risk discourages people from walking and bicycling for transportation, enjoyment or exercise, even though the health benefits outweigh the risk of injury.[6]
Perceived safety can drive regulation which increases costs and inconvenience without improving actual safety.[7][8]
Also called social safety or public safety, security addresses the risk of harm due to intentional criminal acts such as assault, burglary or vandalism.
Because of the moral issues involved, security is of higher importance to many people than substantive safety. For example, a death due to murder is considered worse than a death in a car crash, even though in many countries, traffic deaths are more common than homicides.
Operational safety is the absence of unacceptable risk in the presence of the associated hazards that are known, expected, or reasonably assumed to exist during a planned activity and any likely contingencies associated with it.[9]
![]() | This section needs expansion with: Define operational safety. You can help by making an edit requestadding to it . (August 2024) |
Safety is generally interpreted as implying a real and significant impact on risk of death, injury or damage to property. In response to perceived risks many interventions may be proposed with engineering responses and regulation being two of the most common.
Probably the most common individual response to perceived safety issues is insurance, which compensates for or provides restitution in the case of damage or loss.
System safety and reliability engineering is an engineering discipline. Continuous changes in technology, environmental regulation and public safety concerns make the analysis of complex safety-critical systems more and more demanding.
A common fallacy, for example among electrical engineers regarding structure power systems, is that safety issues can be readily deduced. In fact, safety issues have been discovered one by one, over more than a century in the case mentioned, in the work of many thousands of practitioners, and cannot be deduced by a single individual over a few decades. A knowledge of the literature, the standards and custom in a field is a critical part of safety engineering. A combination of theory and track record of practices is involved, and track record indicates some of the areas of theory that are relevant. (In the US, persons with a state license in Professional Engineering in Electrical Engineering are expected to be competent in this regard, the foregoing notwithstanding, but most electrical engineers have no need of the license for their work.)
Safety is often seen as one of a group of related disciplines: quality, reliability, availability, maintainability and safety. (Availability is sometimes not mentioned, on the principle that it is a simple function of reliability and maintainability.) These issues tend to determine the value of any work, and deficits in any of these areas are considered to result in a cost, beyond the cost of addressing the area in the first place; good management is then expected to minimize total cost.
Safety measures are activities and precautions taken to improve safety, i.e. reduce risk related to human health. Common safety measures include:
Today there are multiple scientific journals focusing on safety research. Among the most popular ones are Safety Science and Journal of Safety Research.[10][11]
The goal of this research is to identify, understand, and mitigate risks to human health and well-being in various environments. This involves systematically studying hazards, analyzing potential and actual accidents, and developing effective strategies to prevent injuries and fatalities. Safety research aims to create safer products, systems, and practices by incorporating scientific, engineering, and behavioral insights. Ultimately, it seeks to enhance public safety, reduce economic losses, and improve overall quality of life by ensuring that both individuals and communities are better protected from harm.[12]
A number of standards organizations exist that promulgate safety standards. These may be voluntary organizations or government agencies. These agencies first define the safety standards, which they publish in the form of codes. They are also Accreditation Bodies and entitle independent third parties such as testing and certification agencies to inspect and ensure compliance to the standards they defined. For instance, the American Society of Mechanical Engineers (ASME) formulated a certain number of safety standards in its Boiler and Pressure Vessel Code (BPVC) and accredited TÜV Rheinland to provide certification services to guarantee product compliance to the defined safety regulations.[13]
A major American standards organization is the American National Standards Institute (ANSI). Usually, members of a particular industry will voluntarily form a committee to study safety issues and propose standards. Those standards are then recommended to ANSI, which reviews and adopts them. Many government regulations require that products sold or used must comply with a particular ANSI standard.
Many government agencies set safety standards for matters under their jurisdiction, such as:
Product safety testing, for the United States, is largely controlled by the Consumer Product Safety Commission. In addition, workplace related products come under the jurisdiction of the Occupational Safety and Health Administration (OSHA), which certifies independent testing companies as Nationally Recognized Testing Laboratories (NRTL), see.[14]
The European Commission provides the legal framework, but the different Member States may authorize test laboratories to carry out safety testing.
Many countries have national organizations that have accreditation to test and/or submit test reports for safety certification. These are typically referred to as a Notified or Competent Body.
Flagging may refer to:
We handle billing and payment disputes by maintaining open communication, providing detailed invoices, and offering solutions to ensure satisfaction. Our transparency throughout the process guarantees that our customers always know what to expect.
We work closely with local law enforcement and emergency services during major incidents. Our collaboration ensures public safety and efficient traffic flow by coordinating our efforts and sharing vital information in real-time.
We're always looking for ways to reduce our environmental footprint during operations. We prioritize using eco-friendly materials, minimize waste, and adopt energy-efficient practices to ensure our traffic control activities are as green as possible.