Event Flagging Services Coquitlam

Event Flagging Services Coquitlam

Roadside Traffic Signs

We're also excited about the potential of autonomous drones for surveillance and traffic monitoring. This proactive approach allows us to promptly address situations ranging from minor accidents to major incidents, significantly reducing response times.

Event Flagging Services Coquitlam - Traffic Detour Management

  1. Municipal Traffic Control Services
  2. Site Control Solutions
  3. Temporary Detour Planning
  4. Traffic Control Equipment Supply
  5. Site Hazard Supervision
  6. Safety Gear Rental
  7. Highway Traffic Control
  8. Route Management Solutions
  9. Traffic Control Supervisors
  10. Roadwork Traffic Coordination
  11. Flagging Team Certification
  12. Pedestrian Safety Guards
  13. Flagging Team Coquitlam
  14. Work Zone Traffic Management
  15. Coquitlam Road Hazard Control
  16. Traffic Detour Management
  17. Flagging and Road Control
  18. Intersection Safety Management
  19. Site Traffic Management
Learn more about Event Flagging Services Coquitlam here As Event Flagging Services Coquitlam continues to evolve, we're excited to grow with it, adapting our services to meet new challenges head-on. At Safeside Traffic Control Ltd, we're more than just traffic management; we're part of the community's safety net. We ensure that your site is well-marked and compliant with all local regulations.
Furthermore, our commitment to using the latest technology in traffic management has enabled us to offer customizable solutions that fit the unique needs of each construction site. These certifications aren't just plaques on the wall; they're a testament to our dedication to safety, compliance, and the highest industry standards.

Event Flagging Services Coquitlam - Controlled Traffic Zones

  1. Traffic Control Plans
  2. Municipal Traffic Control Services
  3. Site Control Solutions
  4. Temporary Detour Planning
  5. Traffic Control Equipment Supply
  6. Site Hazard Supervision
  7. Safety Gear Rental
  8. Highway Traffic Control
  9. Route Management Solutions
  10. Traffic Control Supervisors
  11. Roadwork Traffic Coordination
  12. Controlled Traffic Zones
  13. Certified Traffic Safety
  14. On-Site Safety Solutions
  15. Traffic Control Consulting Services
  16. Traffic Monitoring Services
  17. Work Zone Control Specialists
  18. Safety Barrier Setup
  19. Traffic Route Planning
Our focus is always on minimizing disruptions while maximizing safety for drivers, pedestrians, and our team on the ground. We're constantly updating our knowledge and skills to stay ahead of the curve, incorporating the latest technologies and methods into our practice. Learn more about Professional Traffic Controllers in Coquitlam, BC here.
This proactive approach ensures we can adapt to new regulations and technologies, maintaining our position as Event Flagging Services Coquitlam's leading traffic control service. It influences the way we plan our projects, select our equipment, and execute our operations. We meticulously train our staff in the latest safety protocols and provide them with the best equipment available. This dedication to constant betterment isn't just about adhering to the strictest safety and compliance standards in Event Flagging Services Coquitlam's traffic control sector; it's about setting new benchmarks for excellence.
For instance, during the annual Event Flagging Services Coquitlam Marathon, our strategic placement of traffic control personnel and clear signage around the course allowed for an uninterrupted race day experience for runners and spectators alike, while keeping the city's streets navigable for residents. This ensures that help can reach where it's needed without delay and that everyone affected by the situation remains informed and as calm as possible. Our team ensures smooth operations by meticulously planning and executing traffic control strategies that meet Event Flagging Services Coquitlam's specific needs. Our commitment to safety extends beyond the physical barriers and signage.

Once we've identified the best approach for your needs, we'll provide you with a detailed plan and a transparent quote. This growth allows us to extend our expertise to more clients, ensuring their projects are safer and more efficient. Our focus is on integrating cutting-edge technology with our existing frameworks to create a safer environment for everyone. We're constantly seeking out new technologies and methodologies to enhance safety, efficiency, and compliance on the roads of Event Flagging Services Coquitlam.

We're not just there to direct vehicles; we're part of the community, contributing to its well-being and growth. At Safeside Traffic Control, we're more than just a traffic control company; we're a vital part of the community's safety infrastructure. We understand the importance of keeping projects on schedule while prioritizing public safety, and we're here to make that happen.

These tools aren't just about directing traffic; they're about creating a safe environment for event-goers, participants, and the local community. Key to our service lineup is the comprehensive traffic management plan (TMP) development. Roadside Traffic Signs We're setting the bar high, demonstrating that top-notch safety practices lead to successful, incident-free projects.

We also work closely with regulatory bodies to ensure our methods aren't only compliant but set a standard for excellence in the traffic control industry. They ensure we're well-versed in the latest safety protocols, traffic management techniques, and legal regulations. From major highway constructions to local community events, our team's expertise ensures the safety and efficiency of both the public and workers. Site Traffic Management

Construction Traffic Control Coquitlam

Entity Name Description Link
Coquitlam A city in the Lower Mainland of British Columbia, Canada. Source
Road traffic control A mechanism that coordinates the flow of traffic on roads to ensure smooth and safe operations. Source
Teletraffic engineering The design and management of voice and data transmission over networks like the internet or phone lines. Source
Coquitlam Central station A station on the West Coast Express commuter rail line and SkyTrain rapid transit system, located in Coquitlam, British Columbia. Source
Traffic calming An approach to reduce vehicle speeds and improve safety on roads. Source
City A large human settlement, typically characterized by extensive systems for housing, transportation, sanitation, utilities, land use, and communication. Source
Lower Mainland A region in British Columbia, Canada, known for its diverse landscapes and ecosystems. Source
British Columbia The westernmost province of Canada, located between the Pacific Ocean and the Rocky Mountains. Source
Canada The second largest country in the world by land area, located in the northern part of North America. Source
Metro Vancouver Regional District A federation of 21 municipalities, one Electoral Area and one Treaty First Nation that collaboratively plans for and delivers regional-scale services in the Vancouver area. Source
Burquitlam station An elevated station on the Millennium Line of Metro Vancouver's SkyTrain rapid transit system. Source
Riverview Hospital (Coquitlam) A Canadian mental health facility located in Coquitlam, British Columbia. Source
Traffic management The planning, monitoring and control of traffic from one place to another to ensure a safe, smooth, and efficient transport system that meets access needs of people and freight. Source

Coquitlam Road Management Services

Explorer Simon Fraser came through the region in 1808, and in the 1860s Europeans gradually started settling the area. Coquitlam began as a "place-in-between" with the construction of North Road in the mid-19th century to provide Royal Engineers in New Westminster access to the year-round port facilities in Port Moody.

s

Traffic Flagging Services Near Coquitlam


Citations and other links

Traffic Monitoring Event Flagging Services Coquitlam

Each member holds certifications that not only meet but exceed industry standards, ensuring that we deliver the highest level of service to our clients in Event Flagging Services Coquitlam and beyond. Our 'Safety First' approach isn't just about complying with regulations; it's embedded in our culture. Our team is responsive and ready to provide you with the information you need to make an informed decision about your traffic control requirements. At Safeside Traffic Control Ltd, we're committed to keeping Event Flagging Services Coquitlam moving safely.

Event Flagging Services Coquitlam - Flagging Team Coquitlam

  1. Highway Flagging Services
  2. Site Access Management
  3. Safety Training for Traffic Controllers
  4. Coquitlam Site Safety Solutions
  5. Flagging and Safety Consulting
  6. Emergency Safety Response
  7. Lane Management Services
  8. Certified Safety Flaggers
  9. Construction Zone Safety
  10. Coquitlam Professional Traffic Team
  11. Municipal Safety Planning
  12. Temporary Traffic Signs
  13. Roadway Traffic Flow Control
  14. Road Safety Professionals
  15. Licensed Traffic Flaggers
  16. Construction Site Traffic
  17. Work Zone Coordination
  18. Barricade Placement Services
  19. Roadside Safety Planning
  20. Urban Road Safety Solutions

Our commitment to excellence hasn't only earned us the trust of our clients but has also positioned us as a pivotal player in the traffic control industry. Given our unwavering commitment to safety and compliance, choosing Safeside Traffic Control Ltd for your project is a decision that prioritizes both protection and efficiency. We're keenly aware of the ever-evolving traffic laws and regulations in Event Flagging Services Coquitlam, BC, and we make it our priority to stay ahead of the curve.
Engaging with the community is a cornerstone of our approach, ensuring that every project garners local support and understanding. This commitment drives us to stay updated with the latest safety protocols and to continuously train our staff in best practices. We don't just meet the industry standards; we aim to exceed them, making us a trusted partner for any project, big or small. Read more about Event Flagging Services Coquitlam here
Whether it's rerouting traffic, setting up road closures, or providing detailed signage, we're equipped to handle it all. Certification isn't a one-time achievement for us; it's an ongoing process that ensures our team remains at the forefront of traffic management expertise. This proactive approach helps us prevent confusion and keeps everyone informed.



Event Flagging Services Coquitlam - Certified Traffic Safety

  • Temporary Traffic Signs
  • Roadway Traffic Flow Control
  • Road Safety Professionals
  • Licensed Traffic Flaggers
  • Construction Site Traffic
  • Work Zone Coordination
  • Barricade Placement Services
  • Roadside Safety Planning
  • Urban Road Safety Solutions
  • Safety Signage Rental
  • Temporary Lane Control
  • Coquitlam Roadway Services
  • Roadway Safety Team
  • Controlled Traffic Flow
  • Coquitlam Road Management
  • Controlled Crossing Zones
Traffic Control Experts
Traffic Monitoring Event Flagging Services Coquitlam
Event Flagging Services Coquitlam Flagging Operations

Event Flagging Services Coquitlam Flagging Operations

Additionally, our fleet of vehicles is equipped with GPS tracking and communication tools, ensuring that our teams are always aware of each other's locations and can coordinate seamlessly. Having outlined the extensive range of services we provide, it's now crucial to showcase some of our project success stories that highlight our expertise and commitment in action. That's why we're committed to developing tailored plans that not only ensure safety but also optimize flow and minimize disruption. We're proud to say that we don't just meet the standard requirements for traffic management professionals in Event Flagging Services Coquitlam, BC; we exceed them. Our team utilizes advanced software and equipment, including state-of-the-art traffic management systems, real-time monitoring, and communication tools to ensure smooth operations on the roads of Event Flagging Services Coquitlam, BC. Flagging Team Certification

This collaborative approach allows us to create a customized plan that not only meets regulatory compliance but also minimizes disruption and enhances safety for workers, drivers, and pedestrians alike. We're proud to say that by putting safety first, we're helping build a safer, more connected community. As technology evolves, so does our approach to managing Event Flagging Services Coquitlam's roads. Whether it's improving our signage for better visibility or incorporating new tools for safer pedestrian routing, we're committed to innovation in safety. Flagging Team Coquitlam

We start by conducting a thorough analysis of the project site, taking into consideration factors like traffic volume, pedestrian pathways, and local regulations. Every member undergoes rigorous training sessions, which include both classroom instruction and field exercises, simulating real-life scenarios they'll encounter. At Safeside Traffic Control Ltd, we're always on the lookout for new ways to improve our services and ensure the safety of both the public and our workers. It's a proactive approach to traffic management that prioritizes safety and maximizes the efficiency of existing road networks.

Their insights help us in creating more effective detour routes and in deploying advanced signage and barrier systems that better guide vehicular and pedestrian movements. We've also introduced smart pedestrian crosswalks equipped with sensors to enhance safety for pedestrians, especially during low visibility conditions. Our team, composed of highly skilled traffic controllers, sets the industry standard for professionalism and expertise in Event Flagging Services Coquitlam. That's why we've developed comprehensive safety measures that prioritize pedestrians, ensuring they can navigate these areas safely.

Event Flagging Services Coquitlam Bc Traffic Flagging Consultants

It's this spirit of cooperation and innovation that sets us apart and drives our success in Event Flagging Services Coquitlam's dynamic construction landscape. This means we're always ready to handle any situation that comes our way, with the knowledge and skills to adapt quickly and efficiently. Coquitlam Traffic Safety Crew They're adept at reading situations quickly and accurately, from directing large crowds to managing emergency access routes, all while maintaining clear communication with event organizers and emergency services. Work Zone Traffic Management It's not just about managing the logistics of construction; it's about integrating our projects seamlessly into the fabric of Event Flagging Services Coquitlam without disrupting its natural charm. Our plans are tailored to suit the specific requirements of each job, ensuring seamless integration with your project goals.

Our team's involvement in this project stretched from the initial planning stages through to execution, ensuring minimal disruption to the daily commute of thousands. Our team works closely with event organizers, local authorities, and emergency services to develop comprehensive traffic management plans. Beyond enhancing Event Flagging Services Coquitlam's infrastructure, we're deeply committed to positively impacting the community through our traffic control solutions. Whether it's an unforeseen weather event or a last-minute change in construction schedules, we're always ready to adjust our plans to keep things moving smoothly.

We're always ready to set up detours, manage crowd control, and provide clear, concise communication to both emergency responders and the public. We've identified key areas where improvements are necessary and are gearing up to implement cutting-edge solutions that will streamline traffic flow and reduce congestion in our rapidly growing city. As we explore the nuances of Safeside's contributions to Event Flagging Services Coquitlam, it becomes clear why their services are not just preferred but considered indispensable for maintaining the city's traffic flow. Excellence for us isn't just a goal; it's our way of life.

Each member of our crew is certified in traffic control and management, ensuring they're well-versed in the latest safety protocols and traffic management strategies. Our plans include detailed strategies for signage, barriers, and traffic diversions, all aimed at maintaining smooth traffic flow. We then collaborate closely with construction teams to develop strategies that minimize disruption and maximize safety. It's these testimonials that really highlight the difference we're making. Intersection Safety Management

Event Flagging Services Coquitlam Bc Traffic Flagging Consultants
Event Flagging Services Coquitlam Road Closure Team
Event Flagging Services Coquitlam Road Closure Team

At Safeside, we believe our team's dedication and skill are what set us apart. Certified Traffic Safety We've invested in ongoing training for our team, making sure they're not just certified but also up-to-date with the latest traffic management techniques and technologies. This has had a ripple effect, encouraging more physical activity among students and reducing traffic volume during critical times. Our team uses real-time monitoring tools to anticipate and mitigate potential disruptions, allowing us to adapt our strategies as conditions change. Ensuring the safety of every commuter is at the heart of what we do, employing advanced measures to protect those on the road.

We conduct regular safety audits and encourage a culture of openness where every team member feels empowered to report potential hazards and suggest improvements. Flagging and Road Control We believe that by working hand in hand with these bodies, we can create a safer environment for our team, our clients, and the broader community. By choosing us, you're not just getting traffic control; you're investing in peace of mind, knowing that your project's traffic management is in the hands of experts. Site Traffic Flow Management Moreover, we're not stopping at just local regulations.

This means conducting thorough site assessments, understanding the specific traffic patterns, and deploying the right resources to manage the flow of vehicles and pedestrians safely and efficiently. Our team's expertise ensures that even in the most challenging situations, traffic flow is maintained and risks are minimized. We're also experts in on-site traffic control, employing highly trained personnel equipped with the latest technology to manage traffic flow effectively. Let's take a closer look at how these new standards are reshaping our expectations for safer streets.

Event Flagging Services Coquitlam - Pedestrian Safety Guards

  1. Certified Safety Flaggers
  2. Construction Zone Safety
  3. Coquitlam Professional Traffic Team
  4. Municipal Safety Planning
  5. Temporary Traffic Signs
  6. Roadway Traffic Flow Control
  7. Road Safety Professionals
  8. Licensed Traffic Flaggers
  9. Construction Site Traffic
  10. Work Zone Coordination
  11. Barricade Placement Services
  12. Roadside Safety Planning
  13. Urban Road Safety Solutions
  14. Safety Signage Rental
  15. Temporary Lane Control
  16. Coquitlam Roadway Services
  17. Roadway Safety Team
  18. Controlled Traffic Flow
  19. Coquitlam Road Management


We also partner with recognized certification bodies to validate our training programs. We've partnered with leading safety organizations to deliver up-to-date training sessions that include both theoretical knowledge and practical, hands-on experience. That's where professional traffic control services, like those offered by Safeside Traffic Control Ltd in Event Flagging Services Coquitlam, come into play.

Event Flagging Services Coquitlam - On-Site Safety Solutions

  1. Traffic Control Experts
  2. Site Traffic Flow Management
  3. Lane Closure Coordination
  4. Controlled Traffic Zones
  5. Certified Traffic Safety
  6. On-Site Safety Solutions
  7. Traffic Control Consulting Services
  8. Traffic Monitoring Services
  9. Work Zone Control Specialists
  10. Safety Barrier Setup
  11. Traffic Route Planning
  12. Highway Flagging Services
  13. Site Access Management
  14. Safety Training for Traffic Controllers
  15. Coquitlam Site Safety Solutions
  16. Flagging and Safety Consulting
  17. Emergency Safety Response
  18. Lane Management Services
Our certified and trained traffic controllers are at the heart of our roadwork management efforts.

Event Flagging Services Coquitlam - On-Site Safety Solutions

  • Certified Traffic Controllers
  • Pedestrian Safety Control
  • Professional Flaggers Coquitlam
  • Traffic Regulation Enforcement
  • Highway Safety Control
  • Traffic Flow Supervision
  • Traffic Safety Planning
  • Safety Traffic Flagging
  • Traffic Control Plans
  • Municipal Traffic Control Services
  • Site Control Solutions
  • Temporary Detour Planning
  • Traffic Control Equipment Supply
  • Site Hazard Supervision
  • Safety Gear Rental
  • Highway Traffic Control
  • Route Management Solutions


Road Traffic Planning Event Flagging Services Coquitlam

Our team's preparedness is our first line of defense against accidents, ensuring they're well-versed in both routine and emergency procedures. We're also proud to provide traffic control plan development services, where we work closely with city planners and construction teams to devise strategies that minimize disruptions and maximize safety for both workers and the public. Our team's expertise in planning and execution means we're always a step ahead, anticipating potential bottlenecks and deploying resources to mitigate them. We've noticed that this organization directly impacts the timeline of projects, often accelerating completion dates. Our dedication to quality and safety makes us a trusted partner in traffic control, no matter the size or scope of the project.
Our staff undergoes regular updates on the latest safety protocols and traffic management techniques, ensuring they're always at the forefront of industry best practices. Traffic Detour Management Lastly, these standards introduce stricter penalties for non-compliance. We're leveraging innovative solutions like adaptive traffic signaling systems, which adjust in real-time to traffic flow, significantly reducing congestion and improving travel times. We start by understanding the specific needs of each project, considering factors like traffic volume, pedestrian flow, and construction activities.
Our certifications are more than qualifications; they're a promise. Through these efforts, we've seen a remarkable increase in public cooperation during projects. Flagging services are another pivotal part of our offerings, with highly trained and certified flaggers ready to maintain safety on the roads.

Event Flagging Services Coquitlam - Flagging Team Certification

  1. Traffic Control Consulting Services
  2. Traffic Monitoring Services
  3. Work Zone Control Specialists
  4. Safety Barrier Setup
  5. Traffic Route Planning
  6. Highway Flagging Services
  7. Site Access Management
  8. Safety Training for Traffic Controllers
  9. Coquitlam Site Safety Solutions
  10. Flagging and Safety Consulting
  11. Emergency Safety Response
  12. Lane Management Services
  13. Certified Safety Flaggers
  14. Construction Zone Safety
  15. Coquitlam Professional Traffic Team
  16. Municipal Safety Planning
This commitment to excellence means we're always ready to provide the highest level of service, whether it's for small-scale events or major infrastructure projects.
Our use of advanced software for traffic management planning allows us to simulate traffic flow and identify potential bottlenecks before they become an issue. Our team members receive regular updates and refresher courses to stay ahead of new technologies and methodologies. Our certified and trained traffic controllers are adept at responding to dynamic site conditions, making real-time decisions to keep traffic flowing smoothly. We've also taken steps to support local businesses affected by construction and roadwork.

Learn more about Event Flagging Services Coquitlam here
Road Traffic Planning Event Flagging Services Coquitlam

Crossing from Fort Lee, Bergen County, New Jersey, into Manhattan, New York in heavy automobile traffic on the George Washington Bridge, the world's busiest motor vehicle bridge, transporting approximately 300,000 cars and trucks daily across the Hudson River.

Traffic comprises pedestrians, vehicles, ridden or herded animals, trains, and other conveyances that use public ways (roads/sidewalks) for travel and transportation.

Traffic laws govern and regulate traffic, while rules of the road include traffic laws and informal rules that may have developed over time to facilitate the orderly and timely flow of traffic.[1] Organized traffic generally has well-established priorities, lanes, right-of-way, and traffic control at intersections. (International Regulations for Preventing Collisions at Sea govern the oceans and influence some laws for navigating domestic waters.)

Traffic is formally organized in many jurisdictions, with marked lanes, junctions, intersections, interchanges, traffic signals, cones, or signs. Traffic is often classified by type: heavy motor vehicle (e.g., car, truck), other vehicle (e.g., moped, bicycle), and pedestrian. Different classes may share speed limits and easement, or may be segregated. Some jurisdictions may have very detailed and complex rules of the road while others rely more on drivers' common sense and willingness to cooperate.

Organization typically produces a better combination of travel safety and efficiency. Events which disrupt the flow and may cause traffic to degenerate into a disorganized mess include road construction, collisions, and debris in the roadway. On particularly busy freeways, a minor disruption may persist in a phenomenon known as traffic waves. A complete breakdown of organization may result in traffic congestion and gridlock. Simulations of organized traffic frequently involve queuing theory, stochastic processes and equations of mathematical physics applied to traffic flow.

Etymology and types

[edit]
Congestion in St. Louis, Missouri, early 20th century

The word traffic originally meant "trade" (as it still does) and comes from the Old Italian verb trafficare and noun traffico. The origin of the Italian words is unclear. Suggestions include Catalan trafegar "decant",[2] an assumed Vulgar Latin verb transfricare 'rub across',[3] an assumed Vulgar Latin combination of trans- and facere 'make or do',[3][4] Arabic tafriq 'distribution',[3] and Arabic taraffaqa, which can mean 'seek profit'.[4] Broadly, the term covers many kinds of traffic including network traffic, air traffic, marine traffic and rail traffic, but it is often used narrowly to mean only road traffic.

Rules of the road

[edit]
Traffic controller on Michigan Avenue in Chicago, Illinois
Traffic control in Rome, Italy. This traffic control podium can retract back to road level when not in use.

Rules of the road and driving etiquette are the general practices and procedures that road users are required to follow. These rules usually apply to all road users, though they are of special importance to motorists and cyclists. These rules govern interactions between vehicles and pedestrians. The basic traffic rules are defined by an international treaty under the authority of the United Nations, the 1968 Vienna Convention on Road Traffic. Not all countries are signatory to the convention and, even among signatories, local variations in practice may be found. There are also unwritten local rules of the road, which are generally understood by local drivers.

As a general rule, drivers are expected to avoid a collision with another vehicle and pedestrians, regardless of whether or not the applicable rules of the road allow them to be where they happen to be.[5][6]

In addition to the rules applicable by default, traffic signs and traffic lights must be obeyed, and instructions may be given by a police officer, either routinely (on a busy crossing instead of traffic lights) or as road traffic control around a construction zone, accident, or other road disruption.

Directionality

[edit]

Traffic heading in inverse ways ought to be isolated so as to not hinder each other's way. The most essential guideline is whether to utilize the left or right half of the street.

Traffic regulations

[edit]

In many countries, the rules of the road are codified, setting out the legal requirements and punishments for breaking them.

In the United Kingdom, the rules are set out in the Highway Code, which includes not only obligations but also advice on how to drive sensibly and safely.

In the United States, traffic laws are regulated by the states and municipalities through their respective traffic codes. Most of these are based at least in part on the Uniform Vehicle Code, but there are variations from state to state. In states such as Florida, traffic law and criminal law are separate; therefore, unless someone flees the scene of an accident or commits vehicular homicide or manslaughter, they are only guilty of a minor traffic offense. However, states such as South Carolina have completely criminalised their traffic law, so, for example, one is guilty of a misdemeanor simply for travelling 5 miles over the speed limit.

Trail ethics (right of way)

[edit]

Trail ethics are a set of informal rules for right of way for users of trails, including hikers, mountaineers, equestrians, cyclists, and mountain bikers.

Organised traffic

[edit]

Passage priority (right of way)

[edit]

Vehicles often come into conflict with other vehicles and pedestrians because their intended courses of travel intersect, and thus interfere with each other's routes. The general principle that establishes who has the right to go first is called "right of way" or "priority". It establishes who has the right to use the conflicting part of the road and who has to wait until the other does so.

Yield sign in Switzerland. Mandatory direction to military traffic.

Signs, signals, markings and other features are often used to make priority explicit. Some signs, such as the stop sign, are nearly universal. When there are no signs or markings, different rules are observed depending on the location. These default priority rules differ between countries, and may even vary within countries. Trends toward uniformity are exemplified at an international level by the Vienna Convention on Road Signs and Signals, which prescribes standardised traffic control devices (signs, signals, and markings) for establishing the right of way where necessary.

Crosswalks (or pedestrian crossings) are common in populated areas, and may indicate that pedestrians have priority over vehicular traffic. In most modern cities, the traffic signal is used to establish the right of way on the busy roads. Its primary purpose is to give each road a duration of time in which its traffic may use the intersection in an organised way. The intervals of time assigned for each road may be adjusted to take into account factors such as difference in volume of traffic, the needs of pedestrians, or other traffic signals. Pedestrian crossings may be located near other traffic control devices; if they are not also regulated in some way, vehicles must give priority to them when in use. Traffic on a public road usually has priority over other traffic such as traffic emerging from private access; rail crossings and drawbridges are typical exceptions.

Uncontrolled traffic

[edit]

Uncontrolled traffic comes in the absence of lane markings and traffic control signals. On roads without marked lanes, drivers tend to keep to the appropriate side if the road is wide enough. Drivers frequently overtake others. Obstructions are common.

Intersections have no signals or signage, and a particular road at a busy intersection may be dominant – that is, its traffic flows – until a break in traffic, at which time the dominance shifts to the other road where vehicles are queued. At the intersection of two perpendicular roads, a traffic jam may result if four vehicles face each other side-on.

Turning

[edit]

Drivers often seek to turn onto another road or onto private property. The vehicle's blinking turn signals (commonly known as "blinkers" or "indicators") are often used as a way to announce one's intention to turn, thus alerting other drivers. The actual usage of directional signals varies greatly amongst countries, although its purpose is to indicate a driver's intention to depart from the current (and natural) flow of traffic well before the departure is executed (typically 3 seconds as a guideline).

Center turn lane on a Georgia road

This will usually mean that turning traffic must stop and wait for a breach to turn, and this might cause inconvenience for drivers that follow them but do not want to turn. This is why dedicated lanes and protected traffic signals for turning are sometimes provided. On busier intersections where a protected lane would be ineffective or cannot be built, turning may be entirely prohibited, and drivers will be required to "drive around the block" in order to accomplish the turn. Many cities employ this tactic quite often; in San Francisco, due to its common practice, making three right turns is known colloquially as a "San Francisco left turn". Likewise, as many intersections in Taipei City are too busy to allow direct left turns, signs often direct drivers to drive around the block to turn.

Turning rules are by no means universal. For example, in New Zealand (a drive-on-the-left country) between 1977 and 2012, left turning traffic had to give way to opposing right-turning traffic wishing to take the same road (unless there were multiple lanes, but then one must take care in case a vehicle jumped lanes). New Zealand abolished this particular rule on 25 March 2012, except at roundabouts or when denoted by a Give Way or Stop sign.[7] Although the rule caused initial driver confusion, and many intersections required or still require modification,[8] the change is predicted to eventually prevent one death and 13 serious injuries annually.

On roads with multiple lanes, turning traffic is generally expected to move to the lane closest to the direction they wish to turn. For example, traffic intending to turn right will usually move to the rightmost lane before the intersection. Likewise, left-turning traffic will move to the leftmost lane. Exceptions to this rule may exist where for example the traffic authority decides that the two rightmost lanes will be for turning right, in which case drivers may take whichever of them to turn. Traffic may adapt to informal patterns that rise naturally rather than by force of authority. For example, it is common for drivers to observe (and trust) the turn signals used by other drivers in order to make turns from other lanes. If several vehicles on the right lane are all turning right, a vehicle may come from the next-to-right lane and turn right as well, in parallel with the other right-turning vehicles.

Intersections

[edit]
This intersection in San Jose, California has crosswalks, left-turn lanes, and traffic lights.

In most of Continental Europe, the default rule is to give priority to the right, but this may be overridden by signs or road markings. There, priority was initially given according to the social rank of each traveler, but early in the life of the automobile this rule was deemed impractical and replaced with the priorité à droite (priority to the right) rule, which still applies. At a traffic circle where priorité à droite is not overridden, traffic on what would otherwise be a roundabout gives way to traffic entering the circle. Most French roundabouts now have give-way signs for traffic entering the circle, but there remain some notable exceptions that operate on the old rule, such as the Place de l'Étoile around the Arc de Triomphe. Priority to the right where used in continental Europe may be overridden by an ascending hierarchy of markings, signs, signals, and authorized persons.

Roundabout in a country where traffic drives on the right. Traffic streams circularly around a central island after first yielding to circulating traffic. Unlike with traffic circles, vehicles on a roundabout have priority over the entering vehicle, parking is not allowed and pedestrians are usually prohibited from the central island.
intersection of two-way streets as seen from above (traffic flows on the right side of the road). The east–west street has left turn lanes from both directions, but the north–south street does not have left turn lanes at this intersection. The east–west street traffic lights also have green left turn arrows to show when unhindered left turns can be made. Some possible markings for crosswalks are shown.

In the United Kingdom, priority is generally indicated by signs or markings, so that almost all junctions between public roads (except those governed by traffic signals) have a concept of a major road and minor road. The default give-way-to-the-right rule used in Continental Europe causes problems for many British and Irish drivers who are accustomed to having right of way by default unless otherwise indicated. A very small proportion of low-traffic junctions are unmarked – typically on housing estates or in rural areas. Here the rule is to "proceed with great care"[9] i.e. slow the vehicle and check for traffic on the intersecting road.

Other countries use various methods similar to the above examples to establish the right of way at intersections. For example, in most of the United States, the default priority is to yield to traffic from the right, but this is usually overridden by traffic control devices or other rules, like the boulevard rule. This rule holds that traffic entering a major road from a smaller road or alley must yield to the traffic of the busier road, but signs are often still posted. The boulevard rule can be compared with the above concept of a major and minor road, or the priority roads that may be found in countries that are parties to the Vienna Convention on Road Signs and Signals.

Perpendicular intersections

Also known as a "four-way" intersection, this intersection is the most common configuration for roads that cross each other, and the most basic type.

If traffic signals do not control a four-way intersection, signs or other features are typically used to control movements and make clear priorities. The most common arrangement is to indicate that one road has priority over the other, but there are complex cases where all traffic approaching an intersection must yield and may be required to stop.

In the United States, South Africa, and Canada, there are four-way intersections with a stop sign at every entrance, called four-way stops. A failed signal or a flashing red light is equivalent to a four-way stop, or an all-way stop. Special rules for four-way stops may include:

  1. In the countries that use four-way stops, pedestrians always have priority at crosswalks – even at unmarked ones, which exist as the logical continuations of the sidewalks at every intersection with approximately right angles – unless signed or painted otherwise.
  2. Whichever vehicle first stops at the stop line – or before the crosswalk, if there is no stop line – has priority.
  3. If two vehicles stop at the same time, priority is given to the vehicle on the right.
  4. If several vehicles arrive at the same time, a right-of-way conflict may arise wherein no driver has the legal right-of-way. This may result in drivers informally signaling to other drivers to indicate their intent to yield, for example by waving or flashing headlights.[10]

In Europe and other places, there are similar intersections. These may be marked by special signs (according to the Vienna Convention on Road Signs and Signals), a danger sign with a black X representing a crossroads. This sign informs drivers that the intersection is uncontrolled and that default rules apply. In Europe and in many areas of North America the default rules that apply at uncontrolled four-way intersections are almost identical:

  1. Rules for pedestrians differ by country, in the United States and Canada pedestrians generally have priority at such an intersection.
  2. All vehicles must give priority to any traffic approaching from their right,
  3. Then, if the vehicle is turning right or continuing on the same road it may proceed.
  4. Vehicles turning left must also give priority to traffic approaching from the opposite direction, unless that traffic is also turning left.
  5. If the intersection is congested, vehicles must alternate directions and/or circulate priority to the right one vehicle at a time. [citation needed]

Protected intersection for bicycles

[edit]

A number of features make this protected intersection. A corner refuge island, a setback crossing of the pedestrians and cyclists, generally between 1.5–7 metres of setback, a forward stop bar, which allows cyclists to stop for a traffic light well ahead of motor traffic who must stop behind the crosswalk. Separate signal staging or at least an advance green for cyclists and pedestrians is used to give cyclists and pedestrians no conflicts or a head start over traffic. The design makes a right turn on red, and sometimes left on red depending on the geometry of the intersection in question, possible in many cases, often without stopping.[11]

This type of intersection is common in the bicycle-friendly Netherlands.[12]

Protected intersection design based on a common Dutch model, preserving the physical segregation of the cycle lane throughout the intersection

Pedestrian crossings

[edit]

Pedestrians must often cross from one side of a road to the other, and in doing so may come into the way of vehicles traveling on the road. In many places pedestrians are entirely left to look after themselves, that is, they must observe the road and cross when they can see that no traffic will threaten them. Busier cities usually provide pedestrian crossings, which are strips of the road where pedestrians are expected to cross.

Slovenia, 1961

The actual appearance of pedestrian crossings varies greatly, but the two most common appearances are: (1) a series of lateral white stripes or (2) two longitudinal white lines. The former is usually preferred, as it stands out more conspicuously against the dark pavement.

Some pedestrian crossings accompany a traffic signal to make vehicles stop at regular intervals so pedestrians can cross. Some countries have "intelligent" pedestrian signals, where the pedestrian must push a button in order to assert their intention to cross. In some countries, approaching traffic is monitored by radar or by electromagnetic sensors buried in the road surface, and the pedestrian crossing lights are set to red if a speed infringement is detected. This has the effect of enforcing the local speed limit. See Speed Limits below.

Pedestrian crossings without traffic signals are also common. In this case, the traffic laws usually states that the pedestrian has the right of way when crossing, and that vehicles must stop when a pedestrian uses the crossing. Countries and driving cultures vary greatly as to the extent to which this is respected. In the state of Nevada the car has the right of way when the crosswalk signal specifically forbids pedestrian crossing. Traffic culture is a determinant factor for the behaviors of all road users’ traffic. Specifically, it has a main role in crashes.[13]

Some jurisdictions forbid crossing or using the road anywhere other than at crossings, termed jaywalking. In other areas, pedestrians may have the right to cross where they choose, and have right of way over vehicular traffic while crossing.

In most areas, an intersection is considered to have a crosswalk, even if not painted, as long as the roads meet at approximate right angles. The United Kingdom and Croatia are among the exceptions.

Pedestrian crossings may also be located away from intersections.

Level crossings

[edit]
An example of a typical rail crossing in the United States as an Amtrak Carolinian and Piedmont train passes through

A level crossing is an at-grade intersection of a railway by a road. Because of safety issues, they are often equipped with closable gates, crossing bells and warning signs.

Speed limits

[edit]

The higher the speed of a vehicle, the more difficult collision avoidance becomes and the greater the damage if a collision does occur. Therefore, many countries of the world limit the maximum speed allowed on their roads. Vehicles are not supposed to be driven at speeds which are higher than the posted maximum.

To enforce speed limits, two approaches are generally employed. In the United States, it is common for the police to patrol the streets and use special equipment (typically a radar unit) to measure the speed of vehicles, and pull over any vehicle found to be in violation of the speed limit. In Brazil, Colombia and some European countries, there are computerized speed-measuring devices spread throughout the city, which will automatically detect speeding drivers and take a photograph of the license plate (or number plate), which is later used for applying and mailing the ticket. Many jurisdictions in the U.S. use this technology as well.

A mechanism that was developed in Germany is the Grüne Welle, or green wave, which is an indicator that shows the optimal speed to travel for the synchronized green lights along that corridor. Driving faster or slower than the speed set by the behavior of the lights causes the driver to encounter many red lights. This discourages drivers from speeding or impeding the flow of traffic. See related traffic wave and Pedestrian Crossings, above.

Overtaking

[edit]

Overtaking (or passing) refers to a maneuver by which one or more vehicles traveling in the same direction are passed by another vehicle. On two-lane roads, when there is a split line or a dashed line on the side of the overtaker, drivers may overtake when it is safe. On multi-lane roads in most jurisdictions, overtaking is permitted in the "slower" lanes, though many require a special circumstance. See "Lanes" below.

In the United Kingdom and Canada, notably on extra-urban roads, a solid white or yellow line closer to the driver is used to indicate that no overtaking is allowed in that lane. A double white or yellow line means that neither side may overtake.

In the United States, a solid white line means that lane changes are discouraged and a double white line means that the lane change is prohibited.

Lanes

[edit]
Changing lanes on an 8-lane road outside Gothenburg, Sweden

When a street is wide enough to accommodate several vehicles traveling side-by-side, it is usual for traffic to organize itself into lanes, that is, parallel corridors of traffic. Some roads have one lane for each direction of travel and others have multiple lanes for each direction. Most countries apply pavement markings to clearly indicate the limits of each lane and the direction of travel that it must be used for. In other countries lanes have no markings at all and drivers follow them mostly by intuition rather than visual stimulus.

On roads that have multiple lanes going in the same direction, drivers may usually shift amongst lanes as they please, but they must do so in a way that does not cause inconvenience to other drivers. Driving cultures vary greatly on the issue of "lane ownership": in some countries, drivers traveling in a lane will be very protective of their right to travel in it while in others drivers will routinely expect other drivers to shift back and forth.

Designation and overtaking

The usual designation for lanes on divided highways is the fastest lane is the one closest to the center of the road, and the slowest to the edge of the road. Drivers are usually expected to keep in the slowest lane unless overtaking, though with more traffic congestion all lanes are often used.

When driving on the left:

  • The lane designated for faster traffic is on the right.
  • The lane designated for slower traffic is on the left.
  • Most freeway exits are on the left.
  • Overtaking is permitted to the right, and sometimes to the left.

When driving on the right:

  • The lane designated for faster traffic is on the left.
  • The lane designated for slower traffic is on the right.
  • Most freeway exits are on the right.
  • Overtaking is permitted to the left, and sometimes to the right.

Countries party to the Vienna Convention on Road Traffic have uniform rules about overtaking and lane designation. The convention details (amongst other things) that "Every driver shall keep to the edge of the carriageway appropriate to the direction of traffic", and the "Drivers overtaking shall do so on the side opposite to that appropriate to the direction of traffic", notwithstanding the presence or absence of oncoming traffic. Allowed exceptions to these rules include turning or heavy traffic, traffic in lines, or situation in which signs or markings must dictate otherwise. These rules must be more strictly adhered to on roads with oncoming traffic, but still apply on multi-lane and divided highways. Many countries in Europe are party to the Vienna Conventions on traffic and roads. In Australia (which is not a contracting party), traveling in any lane other than the "slow" lane on a road with a speed limit at or above 80 km/h (50 mph) is an offence, unless signage is posted to the contrary or the driver is overtaking.

Many areas in North America do not have any laws about staying to the slowest lanes unless overtaking. In those areas, unlike many parts of Europe, traffic is allowed to overtake on any side, even in a slower lane. This practice is known as "passing on the right" in the United States and "overtaking on the inside" and "undertaking" in the United Kingdom. When referring to individual lanes on dual carriageways, one does not consider traffic travelling the opposite direction. The inside lane (in the British English sense, i.e. the lane beside the hard shoulder) refers to the lane used for normal travel, while the middle lane is used for overtaking cars on the inside lane. The outside lane (i.e. closest to oncoming traffic) is used for overtaking vehicles in the middle lane. The same principle lies with dual carriageways with more than three lanes.

U.S.-state-specific practices

In some US states (such as Louisiana, Massachusetts and New York), although there are laws requiring all traffic on a public way to use the right-most lane unless overtaking, this rule is often ignored and seldom enforced on multi-lane roadways. Some states, such as Colorado, use a combination of laws and signs restricting speeds or vehicles on certain lanes to emphasize overtaking only on the left lane, and to avoid a psychological condition commonly called road rage.

In California, cars may use any lane on multi-lane roadways. Drivers moving slower than the general flow of traffic are required to stay in the right-most lanes (by California Vehicle Code (CVC) 21654) to keep the way clear for faster vehicles and thus speed up traffic. However, faster drivers may legally pass in the slower lanes if conditions allow (by CVC 21754). But the CVC also requires trucks to stay in the right lane, or in the right two lanes if the roadway has four or more lanes going in their direction. The oldest freeways in California, and some freeway interchanges, often have ramps on the left, making signs like "TRUCKS OK ON LEFT LANE" or "TRUCKS MAY USE ALL LANES" necessary to override the default rule. Lane splitting, or riding motorcycles in the space between cars in traffic, is permitted as long as it is done in a safe and prudent manner.[14]

One-way roadways

[edit]
One-way traffic on Anawrahta road, Yangon

In order to increase traffic capacity and safety, a route may have two or more separate roads for each direction of traffic. Alternatively, a given road might be declared one-way.

High-speed roads

[edit]

In large cities, moving from one part of the city to another by means of ordinary streets and avenues can be time-consuming since traffic is often slowed by at-grade junctions, tight turns, narrow marked lanes and lack of a minimum speed limit. Therefore, it has become common practice for larger cities to build roads for faster through traffic. There are two different types of roads used to provide high-speed access across urban areas:

  • The controlled-access highway (freeway or motorway) is a divided multi-lane highway with fully controlled access and grade-separated intersections (no cross traffic). Some freeways are called expressways, super-highways, or turnpikes, depending on local usage. Access to freeways is fully controlled; entering and leaving the freeway is permitted only at grade-separated interchanges.
  • The limited-access road (often called expressway in areas where the name does not refer to a freeway or motorway) is a lower-grade type of road with some or many of the characteristics of a controlled-access highway: usually a broad multi-lane avenue, frequently divided, with some grade separation at intersections.

Motor vehicle drivers wishing to travel over great distances within the city will usually take the freeways or expressways in order to minimize travel time. When a crossing road is at the same grade as the freeway, a bridge (or, less often, an underpass) will be built for the crossing road. If the freeway is elevated, the crossing road will pass underneath it.

Minimum speed signs are sometimes posted (although increasingly rare) and usually indicate that any vehicle traveling slower than 40 mph (64 km/h) should indicate a slower speed of travel to other motor vehicles by engaging the vehicle's four-way flashing lights. Alternative slower-than-posted speeds may be in effect, based on the posted speed limit of the highway/freeway.

Systems of freeways and expressways are also built to connect distant and regional cities, notable systems include the Interstate highways, the Autobahnen and the Expressway Network of the People's Republic of China.

One-way streets

[edit]

In more sophisticated systems such as large cities, this concept is further extended: some streets are marked as being one-way, and on those streets all traffic must flow in only one direction. Pedestrians on the sidewalks are generally not limited to one-way movement. Drivers wishing to reach a destination they have already passed must return via other streets. One-way streets, despite the inconveniences to some individual drivers, can greatly improve traffic flow since they usually allow traffic to move faster and tend to simplify intersections.

Congested traffic

[edit]
Traffic slows to a crawl on the Monash Freeway in Melbourne, Australia through peak hour traffic.

In some places traffic volume is consistently, extremely large, either during periods of time referred to as rush hour or perpetually. Exceptionally, traffic upstream of a vehicular collision or an obstruction, such as construction, may also be constrained, resulting in a traffic jam. Such dynamics in relation to traffic congestion is known as traffic flow. Traffic engineers sometimes gauge the quality of traffic flow in terms of level of service.

In measured traffic data, common spatiotemporal empirical features of traffic congestion have been found that are qualitatively the same for different highways in different countries. Some of these common features distinguish the wide moving jam and synchronized flow phases of congested traffic in Kerner's three-phase traffic theory.

Rush hour

[edit]

During business days in most major cities, traffic congestion reaches great intensity at predictable times of the day due to the large number of vehicles using the road at the same time. This phenomenon is called rush hour or peak hour, although the period of high traffic intensity often exceeds one hour. Since the advent of car radios, radio programming during rush hour is likely to be called drive time.

Congestion mitigation

[edit]

Rush hour policies

[edit]

Some cities adopt policies to reduce rush-hour traffic and pollution and encourage the use of public transportation. For example, in São Paulo, Manila[15] and in Mexico City, each vehicle has a specific day of the week in which it is forbidden from traveling the roads during rush hour. The day for each vehicle is taken from the license plate number, and this rule is enforced by traffic police and also by hundreds of strategically positioned traffic cameras backed by computerized image-recognition systems that issue tickets to offending drivers.

In the United States and Canada, several expressways have a special lane (called an "HOV Lane" – High Occupancy Vehicle Lane) that can only be used by cars carrying two (some locations-three) or more people. Also, many major cities have instituted strict parking prohibitions during rush hour on major arterial streets leading to and from the central business district. During designated weekday hours, vehicles parked on these primary routes are subject to prompt ticketing and towing at owner expense. The purpose of these restrictions is to make available an additional traffic lane in order to maximize available traffic capacity. Additionally, several cities offer a public telephone service where citizens can arrange rides with others depending on where they live and work. The purpose of these policies is to reduce the number of vehicles on the roads and thus reduce rush-hour traffic intensity.

Metered freeways are also a solution for controlling rush hour traffic. In Phoenix, Arizona and Seattle, Washington, among other places, metered on-ramps have been implemented. During rush hour, traffic signals are used with green lights to allow one car per blink of the light to proceed on to the freeway.

Rush hour is typically caused by multiple cars all going to once place at the same time. There is no way to fix the issue because the economy has set times for work, school, and running errands all during the same hours. There is no avoiding this problem because it exists in every major metropolitan area in the world. [16]

Pre-emption

[edit]

In some areas, emergency responders are provided with specialized equipment, such as a Mobile Infrared Transmitter, which allows emergency response vehicles, particularly fire-fighting apparatus, to have high-priority travel by having the lights along their route change to green. The technology behind these methods has evolved, from panels at the fire department (which could trigger and control green lights for certain major corridors) to optical systems (which the individual fire apparatus can be equipped with to communicate directly with receivers on the signal head). In certain jurisdictions, public transport buses and government-operated winter service vehicles are permitted to use this equipment to extend the length of a green light.[17]

During emergencies where evacuation of a heavily populated area is required, local authorities may institute contraflow lane reversal, in which all lanes of a road lead away from a danger zone regardless of their original flow. Aside from emergencies, contraflow may also be used to ease traffic congestion during rush hour or at the end of a sports event (where a large number of cars are leaving the venue at the same time). For example, the six lanes of the Lincoln Tunnel can be changed from three inbound and three outbound to a two/four configuration depending on traffic volume. The Brazilian highways Rodovia dos Imigrantes and Rodovia Anchieta connect São Paulo to the Atlantic coast. Almost all lanes of both highways are usually reversed during weekends to allow for heavy seaside traffic. The reversibility of the highways requires many additional highway ramps and complicated interchanges.

Intelligent transportation systems

[edit]

An intelligent transportation system (ITS) is a system of hardware, software, and operators-in-the-loop that allow better monitoring and control of traffic in order to optimize traffic flow. As the number of vehicle lane miles traveled per year continues to increase dramatically, and as the number of vehicle lane miles constructed per year has not been keeping pace, this has led to ever-increasing traffic congestion. As a cost-effective solution toward optimizing traffic, ITS presents a number of technologies to reduce congestion by monitoring traffic flows through the use of sensors and live cameras or analysing cellular phone data travelling in cars (floating car data) and in turn rerouting traffic as needed through the use of variable message boards (VMS), highway advisory radio, on board or off board navigation devices and other systems through integration of traffic data with navigation systems. Additionally, the roadway network has been increasingly fitted with additional communications and control infrastructure to allow traffic operations personnel to monitor weather conditions, for dispatching maintenance crews to perform snow or ice removal, as well as intelligent systems such as automated bridge de-icing systems which help to prevent accidents.

Aviation

[edit]

In aviation, right-of-way rules are established over the principle that the least maneuverable aircraft takes priority. In the United States, the Code of Federal Regulations ranks air traffic in the following passage order:[18]

In addition, head-on approaching aircraft shall alter course to the right. An aircraft being overtaken has the right-of-way. A landing aircraft has the right-of-way over other surface-operating aircraft.[18]

See also

[edit]

References

[edit]
  1. ^ "Traffic definition and meaning | Collins English Dictionary". www.collinsdictionary.com. Retrieved 3 January 2020.
  2. ^ "traffic". American Heritage Dictionary (Fifth ed.). 2013. Retrieved 23 March 2014.
  3. ^ a b c Harper, Douglas (2001–2014). "traffic (n.)". Online Etymological Dictionary. Retrieved 23 March 2014.
  4. ^ a b "traffic, n.". OED Online. Oxford University Press. March 2014.
  5. ^ Davies v. Mann, 152 Eng. Rep. 588 (1842)
  6. ^ see legal doctrine of Last Clear Chance
  7. ^ Dearnaley, Mathew (2 September 2011). "Give-way rule change: Campaign to avoid crashes". The New Zealand Herald. Retrieved 23 November 2011.
  8. ^ Preston, Nikki (23 February 2012). "'Wait and see approach' on left turn rule". The New Zealand Herald. Retrieved 26 February 2012.
  9. ^ "The Highway Code – Rule 176". Retrieved 7 November 2012.
  10. ^ Oosting, Jonathan (3 September 2012). "Traffic Talk: Breaking down four-way stop sign scenarios, laws and common-sense courtesies". mlive. Archived from the original on 17 September 2017.
  11. ^ "Out of the Box Transcript.docx" (PDF). Archived (PDF) from the original on 9 October 2022. Retrieved 20 September 2018.
  12. ^ "Junction design in the Netherlands". 23 February 2014.
  13. ^ Varmazyar, S.; Mortazavi, SB; Arghami, S.; Hajizadeh, E. (2014). "Relationship between organisational safety culture dimensions and crashes". International Journal of Injury Control and Safety Promotion. 23 (1): 72–8. doi:10.1080/17457300.2014.947296. PMID 25494102. S2CID 26702114.
  14. ^ WhyBike? (6 March 2006). "All the info you need on lanesharing (lanesplitting)".
  15. ^ Andrew Downie (21 April 2008). "The World's Worst Traffic Jams". Time. Retrieved 2008-06-20
  16. ^ Downs, Anthony (1 January 2004). "Traffic: Why It's Getting Worse, What Government Can Do". Brookings. Retrieved 2 June 2023.
  17. ^ "625 ILCS 5/12-601.1. Traffic control signal preemption devices.". Illinois Compiled Statutes. Illinois General Assembly. 2 July 2003. Retrieved 2 December 2018.
  18. ^ a b "14 CFR 91.113". Code of Federal Regulations. 27 July 2004. Retrieved 24 November 2023.

Further reading

[edit]
[edit]

Flagging may refer to:

See also

[edit]

Pedestrians on a crosswalk in Buenos Aires
A sign in Belo Horizonte, Brazil, directing pedestrians to an overpass for safe crossing.

A pedestrian is a person traveling on foot, whether walking or running.[citation needed] In modern times, the term usually refers to someone walking on a road or pavement (US: sidewalk), but this was not the case historically.[citation needed] Pedestrians may also be wheelchair users or other disabled people who use mobility aids.[1]

Etymology

[edit]

The meaning of pedestrian is displayed with the morphemes ped- ('foot') and -ian ('characteristic of').[2] This word is derived from the Latin term pedester ('going on foot') and was first used (in the English language) during the 18th century.[3] It was originally used, and can still be used today, as an adjective meaning plain or dull.[4] However, in this article it takes on its noun form and refers to someone who walks.

The word pedestrian may have been used in middle French in the Recueil des Croniques et Anchiennes Istories de la Grant Bretaigne.[5]

History

[edit]

Walking has always been the primary means of human locomotion. The first humans to migrate from Africa, about 60,000 years ago, walked.[6] They walked along the coast of India to reach Australia. They walked across Asia to reach the Americas, and from Central Asia into Europe.

With the advent of the cars at the beginning of the 20th century, the main story is that the cars took over, and "people chose the car", but there were many groups and movements that held on to walking as their preferred means of daily transport and some who organised to promote walking, and to counterbalance the widely-held view that often favoured cars, e.g. as related by Peter Norton.[7]

During the 18th and 19th centuries, pedestrianism (walking) was non a popular spectator sport, just as equestrianism (riding) still is in places. One of the most famous pedestrians of that period was Captain Robert Barclay Allardice, known as "The Celebrated Pedestrian", of Stonehaven in Scotland. His most impressive feat was to walk 1 mile (1.6 km) every hour for 1000 hours, which he achieved between 1 June and 12 July 1809. This feat captured many people's imagination, and around 10,000 people came to watch over the course of the event. During the rest of the 19th century, many people tried to repeat this feat, including Ada Anderson who developed it further and walked a half-mile (800 m) each quarter-hour over the 1000 hours.

Since the 20th century, interest in walking as a sport has dropped. Racewalking is still an Olympic sport, but fails to catch public attention as it did. However major walking feats are still performed, such as the Land's End to John o' Groats walk in the United Kingdom, and the traversal of North America from coast to coast. The first person to walk around the world was Dave Kunst who started his walk traveling east from Waseca, Minnesota on 20 June 1970 and completed his journey on 5 October 1974, when he re-entered the town from the west. These feats are often tied to charitable fundraising and are undertaken, among others, by celebrities such as Sir Jimmy Savile and Ian Botham.

Footpaths and roads

[edit]

Outdoor pedestrian networks

[edit]
Pedestrian signal in Santa Ana, California.
The pedestrian Bauman Street in Kazan, Russia.
In many jurisdictions in the United States, one must yield to a pedestrian in a crosswalk.
Colorful pedestrian Light Tunnel at Detroit's DTW airport, United States.

Roads often have a designated footpath for pedestrian traffic, called the sidewalk in North American English, the pavement in British English, and the footpath in Australian and New Zealand English. There are also footpaths not associated with a road; these include urban short cuts and also rural paths used mainly by ramblers, hikers, or hill-walkers. Footpaths in mountainous or forested areas may also be called trails. Pedestrians share some footpaths with horses and bicycles: these paths may be known as bridleways. Other byways used by walkers are also accessible to vehicles. There are also many roads with no footpath. Some modern towns (such as the new suburbs of Peterborough in England) are designed with the network of footpaths and cycle paths almost entirely separate from the road network.

The term trail is also used by the authorities in some countries to mean any footpath that is not attached to a road or street.[8] If such footpaths are in urban environments and are meant for both pedestrians and pedal cyclists, they can be called shared use paths[9] or multi-use paths in general and official usage. нуПЬ

Some shopping streets are for pedestrians only. Some roads have special pedestrian crossings. A bridge solely for pedestrians is a footbridge.

In Britain, regardless of whether there is a footpath, pedestrians have the legal right to use most public roads, excluding motorways and some toll tunnels and bridges such as the Blackwall Tunnel and the Dartford Crossing — although sometimes it may endanger the pedestrian and other road users. The UK Highway Code advises that pedestrians should walk in the opposite direction to oncoming traffic on a road with no footpath.[10]

Indoor pedestrian networks

[edit]

Indoor pedestrian networks connect the different rooms or spaces of a building. Airports, museums, campuses, hospitals and shopping centres might have tools allowing for the computation of the shortest paths between two destinations. Their increasing availability is due to the complexity of path finding in these facilities.[11] Different mapping tools, such as OpenStreetMap, are extending to indoor spaces.[12]

Pedestrianisation

[edit]

Pedestrianisation might be considered as a process of removing vehicular traffic from city streets or restricting vehicular access to streets for use by pedestrians, to improve the environment and safety.[13]

Efforts are under way by pedestrian advocacy groups to restore pedestrian access to new developments, especially to counteract newer developments, 20% to 30% of which in the United States do not include footpaths. Some activists advocate large pedestrian zones where only pedestrians, or pedestrians and some non-motorised vehicles, are allowed. Many urbanists have extolled the virtues of pedestrian streets in urban areas. In the US the proportion of households without a car is 8%, but a notable exception is New York City, the only locality in the United States where more than half of all households do not own a car (the figure is even higher in Manhattan, over 75%).[14]

The use of cars for short journeys is officially discouraged in many parts of the world, and construction or separation of dedicated walking routes in city centres receives a high priority in many large cities in Western Europe, often in conjunction with public transport enhancements. In Copenhagen, the world's longest pedestrian shopping area, Strøget, has been developed over the last 40 years, principally due to the work of Danish architect Jan Gehl, a principle of urban design known as copenhagenisation.

Safety issues

[edit]
A crossing for school children in Jakarta

Safety is an important issue where cars can cross the pedestrian way. Drivers and pedestrians share some responsibility for improving safety of road users.[15] Road traffic crashes are not inevitable; they are both predictable and preventable.[13]

Key risks for pedestrians are well known. Among the well-documented factors are driver behaviour (including speeding and drunk driving); infrastructure missing facilities (including pavements, crossings and islands); and vehicle designs which are not forgiving to pedestrians struck by a vehicle.[13] The Traffic Injury Research Foundation describes pedestrians as vulnerable road users because they are not protected in the same way as occupants of motor vehicles.[16] There is an increasing focus on pedestrians versus motor vehicles in many countries.[citation needed]

Most pedestrian injuries occur while they are crossing a street.[13] Most crashes involving a pedestrian occur at night.[13] Most pedestrian fatalities are killed by a frontal impact. In such a situation, an adult pedestrian is struck by a car front (for instance, the bumper touches either the leg or knee-joint area), accelerating the lower part of the body forward while "the upper body is rotated and accelerated relative to the car," at which point the pelvis and thorax are hit.[13] Then the head hits the windscreen at the velocity of the striking car. Finally, the victim falls to the ground.[13]

Research has shown that urban crimes, or the mere perception of crimes, severely affect the mental and physical health of pedestrians. Inter-pedestrian behaviour, without the involvement of vehicles, is also a key factor to pedestrian safety.[17]

Some special interest groups consider pedestrian fatalities on American roads a carnage.[18] Five states – Arizona, California, Florida, Georgia and Texas – are the site of 46% of all pedestrian deaths in the country.[18] The advent of SUVs is considered a leading cause;[19] speculation of other factors includes population growth, driver distraction with mobile phones, poor street lighting, alcohol and drugs and speeding.[18]

Cities have had mixed results in addressing pedestrian safety with Vision zero plan: Los Angeles fails while NYC has had success. Nonetheless, in the US, some pedestrians have just 40 seconds to cross a street 10 lanes wide.[18]

Pedestrian fatalities are much more common in accident situations in the European Union than in the United States. In the European Union countries, more than 200,000 pedestrians and cyclists are injured annually.[20] Also, each year, more than 270 000 pedestrians lose their lives on the world's roads.[13] At a global level pedestrians constitute 22% of all road deaths,[13] but might be two-thirds in some countries.[13] Pedestrian fatalities, in 2016, were[needs update] 2.6 per million population in the Netherlands, 4.3 in Sweden, 4.5 in Wales, 5.3 in New Zealand, 6.0 in Germany; 7.1 in the whole United Kingdom, 7.5 in Australia, 8.4 in France, 8.4 in Spain, 9.4 in Italy, 11.1 in Israel, 13 in Japan, 13.8 in Greece, 18.5 in the United States, 22.9 in Poland, and 36.3 in Romania.[21]

[edit]
  • EU: Source CARE,[22] 2010-2019: Source ERSO.[23]
  • United States: Source NHTSA 2016[24] (FARS ARF), NHTSA 2019[25]

Road design impact on safety

[edit]
Pedestrians ready across the street next to the Forum shopping center in Helsinki, Finland

It is well documented that a minor increase in speed might greatly increase the likelihood of a crash, and exacerbate resulting casualties. For this reason, the recommended maximum speed is 30 km/h (20 mph) or 40 km/h (25 mph) in residential and high pedestrian traffic areas, with enforced traffic rules on speed limits and traffic-calming measures.[13]

Traffic lights for pedestrians are also a factor in increasing safety. Animated pedestrian traffic light showing the pan-European sign.

The design of road and streets plays a key role in pedestrian safety. Roads are too often designed for motorized vehicles, without taking into account pedestrian and bicycle needs. The non-existence of sidewalk and signals increases risk for pedestrians. This defect might more easily be observed on arterial roadways, intersections and fast-speed lanes without adequate attention to pedestrian facilities.[13] For instance, an assessment of roads in countries from many continents shows that 84% of roads are without pedestrian footpaths, while maximum limited speed is greater than 40 km/h.[13]

Among the factors which reduce road safety for pedestrians are wider lanes, roadway widening, and roadways designed for higher speeds and with increased numbers of traffic lanes.[13]

For this reason, some European cities such as Freiburg (Germany) have lowered the speed limit to 30 km/h on 90% of its streets, to reduce risk for its 15 000 people. With such policy, 24% of daily trips are performed by foot, against 28% by bicycles, 20% by public transport and 28% by car. (See Zone 30.)[13]

A similar set of policies to discourage the use of cars and increase safety for pedestrians has been implemented by the Northern European capitals of Oslo and Helsinki. In 2019, this resulted in both cities counting zero pedestrian deaths for the first time.[26]

Seasonality

[edit]

In Europe, pedestrian fatalities have a seasonal factor, with 6% of annual fatalities occurring in April but 13% (twice more) in December. The rationale for such a change might be complex.[27]

Health benefits and environment

[edit]
Pedestrians walking in winter conditions in Pornainen, Finland.

Regular walking is important both for human health and for the natural environment. Frequent exercise such as walking tends to reduce the chance of obesity and related medical problems. In contrast, using a car for short trips tends to contribute both to obesity and via vehicle emissions to climate change: internal combustion engines are more inefficient and highly polluting during their first minutes of operation (engine cold start). General availability of public transportation encourages walking, as it will not, in most cases, take one directly to one's destination.

Unicode

[edit]

In Unicode, the hexadecimal code for "pedestrian" is 1F6B6. In XML and HTML, the string 🚶 produces 🚶.[28]

See also

[edit]

References

[edit]
  1. ^ "Pedestrians With Disabilities" (PDF). Federal Highway Administration. Retrieved 19 April 2024.
  2. ^ Dunmore, Charles; Fleischer, Rita (2008). Studies in Etymology (Second ed.). Focus. ISBN 9781585100125.
  3. ^ "Definition of PEDESTRIAN". www.merriam-webster.com. Archived from the original on 17 August 2017. Retrieved 27 July 2017.
  4. ^ "Online Etymology Dictionary". www.etymonline.com. Archived from the original on 2 July 2016. Retrieved 27 July 2017.
  5. ^ "PÉDESTRE : Définition de PÉDESTRE". www.cnrtl.fr. Archived from the original on 29 January 2017. Retrieved 7 May 2018.
  6. ^ Dr. Spencer Wells (2005). "Genographic Project". Archived from the original on 25 March 2014. Retrieved 28 March 2014.
  7. ^ Peter D. Norton (2021). "Persistent pedestrianism: urban walking in motor age America, 1920s–1960s". Urban History. 48 (2): 266–289. doi:10.1017/S0963926819000956. S2CID 210507536. Retrieved 20 January 2021.
  8. ^ "Designing Sidewalks and Trails for Access". U.S. Department of Transportation. 7 July 2017. Archived from the original on 29 May 2010. Retrieved 8 May 2018. Trail – A path of travel for recreation and/or transportation within a park, natural environment, or designated corridor that is not classified as a highway, road, or street
  9. ^ "Part II of II: Best Practices Design Guide – Sidewalk2 – Publications – Bicycle and Pedestrian Program – Environment – FHWA". Federal Highway Administration (FHWA). Archived from the original on 29 November 2011. Retrieved 7 May 2018.
  10. ^ "Rules for pedestrians (1 to 35) – The Highway Code – Guidance – GOV.UK". www.gov.uk. Archived from the original on 8 January 2018. Retrieved 7 May 2018.
  11. ^ Goetz, M.; Zipf, A. (2011). "Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments". Geo-spatial Information Science. 14 (2): 119–128. Bibcode:2011GSIS...14..119G. doi:10.1007/s11806-011-0474-3.
  12. ^ Goetz, M (2012). "Using Crowdsourced Indoor Geodata for the Creation of a Three-Dimensional Indoor Routing Web Application". Future Internet. 4 (2): 575–591. doi:10.3390/fi4020575.
  13. ^ a b c d e f g h i j k l m n o Pedestrian safety. A Road Safety Manual for Decision-Makers and Practitioners (PDF). World Health Organization. 2013. p. 114. ISBN 978-92-4-150535-2. Retrieved 3 April 2018.
  14. ^ "Publications – Bureau of Transportation Statistics". www.bts.gov. Archived from the original on 2 October 2006. Retrieved 7 May 2018.
  15. ^ "Tips for Pedestrian Safety". AAA Exchange. Retrieved 7 May 2018.
  16. ^ "The Road Safety Monitor 2008. Pedestrians and Bicyclists" (PDF). Traffic Injury Research Foundation. p. 37. Retrieved 13 April 2018.
  17. ^ Wu, Yifei; Li, Hansong (April 2022). "Signalling security: An observational and game theory approach to inter-pedestrian psychology". Transportation Research Part F: Traffic Psychology and Behaviour. 86: 238–251. doi:10.1016/j.trf.2022.02.017. S2CID 247483300.
  18. ^ a b c d Aratani, Lauren (12 March 2019). "'Boulevards of death': why pedestrian road fatalities are surging in the US". The Guardian. Guardian News & Media Limited. Retrieved 17 March 2019.
  19. ^ Eric D. Lawrence, Nathan Bomey and Kristi Tanner (1 July 2018). "Death on foot: America's love of SUVs is killing pedestrians". www.freep.com. Detroit Free Press. Archived from the original on 14 December 2019. Retrieved 24 December 2019.
  20. ^ "European Pedestrian Crash Standards Will Make Global Changes in Car Design Inevitable". Safety Research & Strategies, Inc. 1 April 2005. Retrieved 7 May 2018.
  21. ^ "Reported road accidents, vehicles and casualties tables for Great Britain".
  22. ^ "Pedestrians" (PDF). Traffic Safety Basic Facts. European Road Safety Observatory. European Commission. 2018. Retrieved 9 March 2019.
  23. ^ European Commission (2021) Road safety thematic report – Fatigue. European Road Safety Observatory. Brussels, European Commission, Directorate General for Transport
  24. ^ "Pedestrians". Traffic Safety Facts. U.S. Department of Transportation. 2016. Retrieved 9 March 2019. {{cite journal}}: Unknown parameter |agency= ignored (help)
  25. ^ National Center for Statistics and Analysis. (2021, May). Pedestrians: 2019 data (Traffic Safety Facts. Report No. DOT HS 813 079). National Highway Traffic Safety Administration.
  26. ^ Murray, Jessica (16 March 2020). "How Helsinki and Oslo cut pedestrian deaths to zero". The Guardian. London.
  27. ^ "Archived copy" (PDF). Archived from the original (PDF) on 27 July 2020. Retrieved 27 July 2020.{{cite web}}: CS1 maint: archived copy as title (link)
  28. ^ "Transport and Map Symbols" (PDF). Unicode Consortium.
[edit]

Warning signs, such as this one, can improve safety awareness.

Safety is the state of being "safe", the condition of being protected from harm or other danger. Safety can also refer to the control of recognized hazards in order to achieve an acceptable level of risk.

Meanings

[edit]
"After whiskey driving risky" safety road sign in Ladakh, India
Platform screen doors are primarily used for passenger safety to prevent users from falling down on the tracks.

The word 'safety' entered the English language in the 14th century.[1] It is derived from Latin salvus, meaning uninjured, in good health, safe.[2]

There are two slightly different meanings of "safety". For example, "home safety" may indicate a building's ability to protect against external harm events (such as weather, home invasion, etc.), or may indicate that its internal installations (such as appliances, stairs, etc.) are safe (not dangerous or harmful) for its inhabitants.

Discussions of safety often include mention of related terms. Security is such a term. With time the definitions between these two have often become interchanged, equated, and frequently appear juxtaposed in the same sentence. Readers are left to conclude whether they comprise a redundancy. This confuses the uniqueness that should be reserved for each by itself. When seen as unique, as we intend here, each term will assume its rightful place in influencing and being influenced by the other.

Safety is the condition of a "steady state" of an organization or place doing what it is supposed to do. "What it is supposed to do" is defined in terms of public codes and standards, associated architectural and engineering designs, corporate vision and mission statements, and operational plans and personnel policies. For any organization, place, or function, large or small, safety is a normative concept. It complies with situation-specific definitions of what is expected and acceptable.[3]

Using this definition, protection from a home's external threats and protection from its internal structural and equipment failures (see Meanings, above) are not two types of safety but rather two aspects of a home's steady state.

In the world of everyday affairs, not all goes as planned. Some entity's steady state is challenged. This is where security science, which is of more recent date, enters. Drawing from the definition of safety, then:

Security is the process or means, physical or human, of delaying, preventing, and otherwise protecting against external or internal, defects, dangers, loss, criminals, and other individuals or actions that threaten, hinder or destroy an organization’s "steady state," and deprive it of its intended purpose for being.

Using this generic definition of safety it is possible to specify the elements of a security program.[3]

Limitations

[edit]

Safety can be limited in relation to some guarantee or a standard of insurance to the quality and unharmful function of an object or organization. It is used in order to ensure that the object or organization will do only what it is meant to do.

It is important to realize that safety is relative. Eliminating all risk, if even possible, would be extremely difficult and very expensive. A safe situation is one where risks of injury or property damage are low and manageable.

When something is called safe, this usually means that it is safe within certain reasonable limits and parameters. For example, a medication may be safe, for most people, under most circumstances, if taken in a certain amount.

A choice motivated by safety may have other, unsafe consequences. For example, frail elderly people are sometimes moved out of their homes and into hospitals or skilled nursing homes with the claim that this will improve the person's safety. The safety provided is that daily medications will be supervised, the person will not need to engage in some potentially risky activities such as climbing stairs or cooking, and if the person falls down, someone there will be able to help the person get back up. However, the end result might be decidedly unsafe, including the dangers of transfer trauma, hospital delirium, elder abuse, hospital-acquired infections, depression, anxiety, and even a desire to die.[4]

Types

[edit]

There is a distinction between products that meet standards, that are safe, and that merely feel safe. The highway safety community uses these terms:[citation needed]

Normative

[edit]

Normative safety is achieved when a product or design meets applicable standards and practices for design and construction or manufacture, regardless of the product's actual safety history.

Substantive

[edit]

Substantive or objective safety occurs when the real-world safety history is favorable, whether or not standards are met.

Perceived

[edit]

Perceived or subjective safety refers to the users' level of comfort and perception of risk, without consideration of standards or safety history. For example, traffic signals are perceived as safe, yet under some circumstances, they can increase traffic crashes at an intersection. Traffic roundabouts have a generally favorable safety record[5] yet often make drivers nervous.

Low perceived safety can have costs. For example, after the 9/11 attacks in 2001, many people chose to drive rather than fly, despite the fact that, even counting terrorist attacks, flying is safer than driving. Perceived risk discourages people from walking and bicycling for transportation, enjoyment or exercise, even though the health benefits outweigh the risk of injury.[6]

Perceived safety can drive regulation which increases costs and inconvenience without improving actual safety.[7][8]

Security

[edit]

Also called social safety or public safety, security addresses the risk of harm due to intentional criminal acts such as assault, burglary or vandalism.

Because of the moral issues involved, security is of higher importance to many people than substantive safety. For example, a death due to murder is considered worse than a death in a car crash, even though in many countries, traffic deaths are more common than homicides.

Operational safety

[edit]

Operational safety is the absence of unacceptable risk in the presence of the associated hazards that are known, expected, or reasonably assumed to exist during a planned activity and any likely contingencies associated with it.[9]

Risks and responses

[edit]

Safety is generally interpreted as implying a real and significant impact on risk of death, injury or damage to property. In response to perceived risks many interventions may be proposed with engineering responses and regulation being two of the most common.

Probably the most common individual response to perceived safety issues is insurance, which compensates for or provides restitution in the case of damage or loss.

System safety and reliability engineering

[edit]

System safety and reliability engineering is an engineering discipline. Continuous changes in technology, environmental regulation and public safety concerns make the analysis of complex safety-critical systems more and more demanding.

A common fallacy, for example among electrical engineers regarding structure power systems, is that safety issues can be readily deduced. In fact, safety issues have been discovered one by one, over more than a century in the case mentioned, in the work of many thousands of practitioners, and cannot be deduced by a single individual over a few decades. A knowledge of the literature, the standards and custom in a field is a critical part of safety engineering. A combination of theory and track record of practices is involved, and track record indicates some of the areas of theory that are relevant. (In the US, persons with a state license in Professional Engineering in Electrical Engineering are expected to be competent in this regard, the foregoing notwithstanding, but most electrical engineers have no need of the license for their work.)

Safety is often seen as one of a group of related disciplines: quality, reliability, availability, maintainability and safety. (Availability is sometimes not mentioned, on the principle that it is a simple function of reliability and maintainability.) These issues tend to determine the value of any work, and deficits in any of these areas are considered to result in a cost, beyond the cost of addressing the area in the first place; good management is then expected to minimize total cost.

Measures

[edit]

Safety measures are activities and precautions taken to improve safety, i.e. reduce risk related to human health. Common safety measures include:

  • Chemical analysis
  • Destructive testing of samples
  • Drug testing of employees, etc.
  • Examination of activities by specialists to minimize physical stress or increase productivity
  • Geological surveys to determine whether land or water sources are polluted, how firm the ground is at a potential building site, etc.
  • Government regulation so suppliers know what standards their product is expected to meet.
  • Industry regulation so suppliers know what level of quality is expected. Industry regulation is often imposed to avoid potential government regulation.
  • Instruction manuals explaining how to use a product or perform an activity
  • Instructional videos demonstrating proper use of products
  • Root cause analysis to identify causes of a system failure and correct deficiencies.
  • Internet safety or online safety, is protection of the user's safety from cyber threats or computer crime in general.
  • Periodic evaluations of employees, departments, etc.
  • Physical examinations to determine whether a person has a physical condition that would create a problem.
  • Process safety management is an analytical tool focused on preventing and managing releases of hazardous materials in industrial plants.
  • Safety margins/safety factors, for instance, a product rated to never be required to handle more than 100 kg might be designed to fail under at least 200 kg, a safety factor of two. Higher numbers are used in more sensitive applications such as medical or transit safety.
  • Self-imposed regulation of various types.
  • Implementation of standard protocols and procedures so that activities are conducted in a known way.
  • Statements of ethics by industry organizations or an individual company so its employees know what is expected of them.
  • Stress testing subjects a person or product to stresses in excess of those the person or product is designed to handle, to determining the "breaking point".
  • Training of employees, vendors, product users
  • Visual examination for dangerous situations such as emergency exits blocked because they are being used as storage areas.
  • Visual examination for flaws such as cracks, peeling, loose connections.
  • X-ray analysis to see inside a sealed object such as a weld, a cement wall or an airplane outer skin.

Research

[edit]

Today there are multiple scientific journals focusing on safety research. Among the most popular ones are Safety Science and Journal of Safety Research.[10][11]

The goal of this research is to identify, understand, and mitigate risks to human health and well-being in various environments. This involves systematically studying hazards, analyzing potential and actual accidents, and developing effective strategies to prevent injuries and fatalities. Safety research aims to create safer products, systems, and practices by incorporating scientific, engineering, and behavioral insights. Ultimately, it seeks to enhance public safety, reduce economic losses, and improve overall quality of life by ensuring that both individuals and communities are better protected from harm.[12]

Standards organizations

[edit]

A number of standards organizations exist that promulgate safety standards. These may be voluntary organizations or government agencies. These agencies first define the safety standards, which they publish in the form of codes. They are also Accreditation Bodies and entitle independent third parties such as testing and certification agencies to inspect and ensure compliance to the standards they defined. For instance, the American Society of Mechanical Engineers (ASME) formulated a certain number of safety standards in its Boiler and Pressure Vessel Code (BPVC) and accredited TÜV Rheinland to provide certification services to guarantee product compliance to the defined safety regulations.[13]

United States

[edit]

American National Standards Institute

[edit]

A major American standards organization is the American National Standards Institute (ANSI). Usually, members of a particular industry will voluntarily form a committee to study safety issues and propose standards. Those standards are then recommended to ANSI, which reviews and adopts them. Many government regulations require that products sold or used must comply with a particular ANSI standard.

Government agencies

[edit]

Many government agencies set safety standards for matters under their jurisdiction, such as:

Testing laboratories

[edit]

Product safety testing, for the United States, is largely controlled by the Consumer Product Safety Commission. In addition, workplace related products come under the jurisdiction of the Occupational Safety and Health Administration (OSHA), which certifies independent testing companies as Nationally Recognized Testing Laboratories (NRTL), see.[14]

European Union

[edit]

Institutions

[edit]

Testing laboratories

[edit]

The European Commission provides the legal framework, but the different Member States may authorize test laboratories to carry out safety testing.

Other countries

[edit]

Standards institutions

[edit]

Testing laboratories

[edit]

Many countries have national organizations that have accreditation to test and/or submit test reports for safety certification. These are typically referred to as a Notified or Competent Body.

A mug reminds the drinker to be careful.

See also

[edit]

References

[edit]
  1. ^ Safety Definition & Meaning - Merriam-Webster
  2. ^ safety | Etymology of safety by etymonline
  3. ^ a b Charles G. Oakes, PhD, Blue Ember Technologies, LLC."Safety versus Security in Fire Protection Planning Archived 2012-03-13 at the Wayback Machine,"The American Institute of Architects: Knowledge Communities, May 2009. Retrieved on June 22, 2011.
  4. ^ Neumann, Ann (February 2019). "Going to Extremes". Harper's Magazine. ISSN 0017-789X. Retrieved 2019-01-22.
  5. ^ "Proven Safety Countermeasures: Roundabouts". Federal Highway Administration. Archived from the original on 2012-07-31. Retrieved 2012-08-13.
  6. ^ Jeroen Johan de Hartog; Hanna Boogaard; Hans Nijland; Gerard Hoek (1 August 2010). "Do the Health Benefits of Cycling Outweigh the Risks?". Environmental Health Perspectives. 118 (8): 1109–1116. doi:10.1289/ehp.0901747. PMC 2920084. PMID 20587380.
  7. ^ Stotz, Tamara; Bearth, Angela; Ghelfi, Signe Maria; Siegrist, Michael (May 2022). "The perceived costs and benefits that drive the acceptability of risk-based security screenings at airports". Journal of Air Transport Management. 100: 102183. doi:10.1016/j.jairtraman.2022.102183. hdl:20.500.11850/531027.
  8. ^ Buchan, John C.; Thiel, Cassandra L.; Steyn, Annalien; Somner, John; Venkatesh, Rengaraj; Burton, Matthew J.; Ramke, Jacqeline (June 2022). "Addressing the environmental sustainability of eye health-care delivery: a scoping review". The Lancet Planetary Health. 6 (6): e524–e534. doi:10.1016/S2542-5196(22)00074-2. PMID 35709809.
  9. ^ "Operational safety definition". www.lawinsider.com. Retrieved 16 August 2024.
  10. ^ "Scopus preview - Scopus - Safety Science". www.scopus.com. Retrieved 2024-05-19.
  11. ^ "Scopus preview - Scopus - Journal of Safety Research". www.scopus.com. Retrieved 2024-05-19.
  12. ^ "Aims and scope - Safety Science | ScienceDirect.com by Elsevier". www.sciencedirect.com. Retrieved 2024-05-19.
  13. ^ Rheinland, TÜV. "Pressure Vessel Inspection According to ASME". tuv.com. Archived from the original on 14 January 2017. Retrieved 2 May 2018.
  14. ^ "Nationally Recognized Testing Laboratories (NRTLs) - Occupational Safety and Health Administration". www.osha.gov. Archived from the original on 8 April 2018. Retrieved 2 May 2018.

Further reading

[edit]

Construction site and equipment prepared for start of work in Cologne, Germany (2017)

Construction is a general term meaning the art and science of forming objects, systems, or organizations.[1] It comes from the Latin word constructio (from com- "together" and struere "to pile up") and Old French construction.[2] To 'construct' is a verb: the act of building, and the noun is construction: how something is built or the nature of its structure.

In its most widely used context, construction covers the processes involved in delivering buildings, infrastructure, industrial facilities, and associated activities through to the end of their life. It typically starts with planning, financing, and design that continues until the asset is built and ready for use. Construction also covers repairs and maintenance work, any works to expand, extend and improve the asset, and its eventual demolition, dismantling or decommissioning.

The construction industry contributes significantly to many countries' gross domestic products (GDP). Global expenditure on construction activities was about $4 trillion in 2012. In 2022, expenditure on the construction industry exceeded $11 trillion a year, equivalent to about 13 percent of global GDP. This spending was forecasted to rise to around $14.8 trillion in 2030.[3]

The construction industry promotes economic development and brings many non-monetary benefits to many countries, but it is one of the most hazardous industries. For example, about 20% (1,061) of US industry fatalities in 2019 happened in construction.[4]

History

[edit]

The first huts and shelters were constructed by hand or with simple tools. As cities grew during the Bronze Age, a class of professional craftsmen, like bricklayers and carpenters, appeared. Occasionally, slaves were used for construction work. In the Middle Ages, the artisan craftsmen were organized into guilds. In the 19th century, steam-powered machinery appeared, and later, diesel- and electric-powered vehicles such as cranes, excavators and bulldozers.

Fast-track construction has been increasingly popular in the 21st century. Some estimates suggest that 40% of construction projects are now fast-track construction.[5]

Construction industry sectors

[edit]
Industrial assemblage of a thermal oxidizer in the United States

Broadly, there are three sectors of construction: buildings, infrastructure and industrial:[6]

  • Building construction is usually further divided into residential and non-residential.
  • Infrastructure, also called 'heavy civil' or 'heavy engineering', includes large public works, dams, bridges, highways, railways, water or wastewater and utility distribution.
  • Industrial construction includes offshore construction (mainly of energy installations), mining and quarrying, refineries, chemical processing, mills and manufacturing plants.

The industry can also be classified into sectors or markets.[7] For example, Engineering News-Record (ENR), a US-based construction trade magazine, has compiled and reported data about the size of design and construction contractors. In 2014, it split the data into nine market segments: transportation, petroleum, buildings, power, industrial, water, manufacturing, sewage/waste, telecom, hazardous waste, and a tenth category for other projects.[8] ENR used data on transportation, sewage, hazardous waste and water to rank firms as heavy contractors.[9]

The Standard Industrial Classification and the newer North American Industry Classification System classify companies that perform or engage in construction into three subsectors: building construction, heavy and civil engineering construction, and specialty trade contractors. There are also categories for professional services firms (e.g., engineering, architecture, surveying, project management).[10][11]

Building construction

[edit]
Military residential unit construction by U.S. Navy personnel in Afghanistan

Building construction is the process of adding structures to areas of land, also known as real property sites. Typically, a project is instigated by or with the owner of the property (who may be an individual or an organisation); occasionally, land may be compulsorily purchased from the owner for public use.[12]

Residential construction

[edit]
Units under construction in Brighton, Victoria, Australia

Residential construction may be undertaken by individual land-owners (self-built), by specialist housebuilders, by property developers, by general contractors, or by providers of public or social housing (e.g.: local authorities, housing associations). Where local zoning or planning policies allow, mixed-use developments may comprise both residential and non-residential construction (e.g.: retail, leisure, offices, public buildings, etc.).

Residential construction practices, technologies, and resources must conform to local building authority's regulations and codes of practice. Materials readily available in the area generally dictate the construction materials used (e.g.: brick versus stone versus timber). Costs of construction on a per square meter (or per square foot) basis for houses can vary dramatically based on site conditions, access routes, local regulations, economies of scale (custom-designed homes are often more expensive to build) and the availability of skilled tradespeople.[13]

Non-residential construction

[edit]
Construction of the Federal Reserve building in Kansas City, Missouri

Depending upon the type of building, non-residential building construction can be procured by a wide range of private and public organisations, including local authorities, educational and religious bodies, transport undertakings, retailers, hoteliers, property developers, financial institutions and other private companies. Most construction in these sectors is undertaken by general contractors.

Infrastructure construction

[edit]
Shasta Dam under construction in June 1942

Civil engineering covers the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, tunnels, airports, water and sewerage systems, pipelines, and railways.[14][15] Some general contractors have expertise in civil engineering; civil engineering contractors are firms dedicated to work in this sector, and may specialise in particular types of infrastructure.

Industrial construction

[edit]
The National Cement Share Company of Ethiopia's new plant in Dire Dawa

Industrial construction includes offshore construction (mainly of energy installations: oil and gas platforms, wind power), mining and quarrying, refineries, breweries, distilleries and other processing plants, power stations, steel mills, warehouses and factories.

Construction processes

[edit]

Some construction projects are small renovations or repair jobs, like repainting or fixing leaks, where the owner may act as designer, paymaster and laborer for the entire project. However, more complex or ambitious projects usually require additional multi-disciplinary expertise and manpower, so the owner may commission one or more specialist businesses to undertake detailed planning, design, construction and handover of the work. Often the owner will appoint one business to oversee the project (this may be a designer, a contractor, a construction manager, or other advisors); such specialists are normally appointed for their expertise in project delivery and construction management and will help the owner define the project brief, agree on a budget and schedule, liaise with relevant public authorities, and procure materials and the services of other specialists (the supply chain, comprising subcontractors and materials suppliers). Contracts are agreed for the delivery of services by all businesses, alongside other detailed plans aimed at ensuring legal, timely, on-budget and safe delivery of the specified works.

Design, finance, and legal aspects overlap and interrelate. The design must be not only structurally sound and appropriate for the use and location, but must also be financially possible to build, and legal to use. The financial structure must be adequate to build the design provided and must pay amounts that are legally owed. Legal structures integrate design with other activities and enforce financial and other construction processes.

These processes also affect procurement strategies. Clients may, for example, appoint a business to design the project, after which a competitive process is undertaken to appoint a lead contractor to construct the asset (design–bid–build); they may appoint a business to lead both design and construction (design-build); or they may directly appoint a designer, contractor and specialist subcontractors (construction management).[16] Some forms of procurement emphasize collaborative relationships (partnering, alliancing) between the client, the contractor, and other stakeholders within a construction project, seeking to ameliorate often highly competitive and adversarial industry practices. DfMA (design for manufacture and assembly) approaches also emphasize early collaboration with manufacturers and suppliers regarding products and components.

Construction or refurbishment work in a "live" environment (where residents or businesses remain living in or operating on the site) requires particular care, planning and communication.[17]

Planning

[edit]
Digging the foundation for a building construction in Jakarta, Indonesia

When applicable, a proposed construction project must comply with local land-use planning policies including zoning and building code requirements. A project will normally be assessed (by the 'authority having jurisdiction', AHJ, typically the municipality where the project will be located) for its potential impacts on neighbouring properties, and upon existing infrastructure (transportation, social infrastructure, and utilities including water supply, sewerage, electricity, telecommunications, etc.). Data may be gathered through site analysis, site surveys and geotechnical investigations. Construction normally cannot start until planning permission has been granted, and may require preparatory work to ensure relevant infrastructure has been upgraded before building work can commence. Preparatory works will also include surveys of existing utility lines to avoid damage-causing outages and other hazardous situations.

Some legal requirements come from malum in se considerations, or the desire to prevent indisputably bad phenomena, e.g. explosions or bridge collapses. Other legal requirements come from malum prohibitum considerations, or factors that are a matter of custom or expectation, such as isolating businesses from a business district or residences from a residential district. An attorney may seek changes or exemptions in the law that governs the land where the building will be built, either by arguing that a rule is inapplicable (the bridge design will not cause a collapse), or that the custom is no longer needed (acceptance of live-work spaces has grown in the community).[18]

During the construction of a building, a municipal building inspector usually inspects the ongoing work periodically to ensure that construction adheres to the approved plans and the local building code. Once construction is complete, any later changes made to a building or other asset that affect safety, including its use, expansion, structural integrity, and fire protection, usually require municipality approval.

Finance

[edit]

Depending on the type of project, mortgage bankers, accountants, and cost engineers may participate in creating an overall plan for the financial management of a construction project. The presence of the mortgage banker is highly likely, even in relatively small projects since the owner's equity in the property is the most obvious source of funding for a building project. Accountants act to study the expected monetary flow over the life of the project and to monitor the payouts throughout the process. Professionals including cost engineers, estimators and quantity surveyors apply expertise to relate the work and materials involved to a proper valuation.

Financial planning ensures adequate safeguards and contingency plans are in place before the project is started, and ensures that the plan is properly executed over the life of the project. Construction projects can suffer from preventable financial problems.[19] Underbids happen when builders ask for too little money to complete the project. Cash flow problems exist when the present amount of funding cannot cover the current costs for labour and materials; such problems may arise even when the overall budget is adequate, presenting a temporary issue. Cost overruns with government projects have occurred when the contractor identified change orders or project changes that increased costs, which are not subject to competition from other firms as they have already been eliminated from consideration after the initial bid.[20] Fraud is also an issue of growing significance within construction.[21]

Large projects can involve highly complex financial plans and often start with a conceptual cost estimate performed by a building estimator. As portions of a project are completed, they may be sold, supplanting one lender or owner for another, while the logistical requirements of having the right trades and materials available for each stage of the building construction project carry forward. Public–private partnerships (PPPs) or private finance initiatives (PFIs) may also be used to help deliver major projects. According to McKinsey in 2019, the "vast majority of large construction projects go over budget and take 20% longer than expected".[22]

[edit]
Construction along Ontario Highway 401, widening the road from six to twelve travel lanes

A construction project is a complex net of construction contracts and other legal obligations, each of which all parties must carefully consider. A contract is the exchange of a set of obligations between two or more parties, and provides structures to manage issues. For example, construction delays can be costly, so construction contracts set out clear expectations and clear paths to manage delays. Poorly drafted contracts can lead to confusion and costly disputes.

At the start of a project, legal advisors seek to identify ambiguities and other potential sources of trouble in the contract structures, and to present options for preventing problems. During projects, they work to avoid and resolve conflicts that arise. In each case, the lawyer facilitates an exchange of obligations that matches the reality of the project.

Apartment complex under construction in Daegu, South Korea

Procurement

[edit]

Traditional or Design-bid-build

[edit]

Design-bid-build is the most common and well-established method of construction procurement. In this arrangement, the architect, engineer or builder acts for the client as the project coordinator. They design the works, prepare specifications and design deliverables (models, drawings, etc.), administer the contract, tender the works, and manage the works from inception to completion. In parallel, there are direct contractual links between the client and the main contractor, who, in turn, has direct contractual relationships with subcontractors. The arrangement continues until the project is ready for handover.

Design-build

[edit]

Design-build became more common from the late 20th century, and involves the client contracting a single entity to provide design and construction. In some cases, the design-build package can also include finding the site, arranging funding and applying for all necessary statutory consents. Typically, the client invites several Design & Build (D&B) contractors to submit proposals to meet the project brief and then selects a preferred supplier. Often this will be a consortium involving a design firm and a contractor (sometimes more than one of each). In the United States, departments of transportation usually use design-build contracts as a way of progressing projects where states lack the skills or resources, particularly for very large projects.[23]

Construction management

[edit]

In a construction management arrangement, the client enters into separate contracts with the designer (architect or engineer), a construction manager, and individual trade contractors. The client takes on the contractual role, while the construction or project manager provides the active role of managing the separate trade contracts, and ensuring that they complete all work smoothly and effectively together. This approach is often used to speed up procurement processes, to allow the client greater flexibility in design variation throughout the contract, to enable the appointment of individual work contractors, to separate contractual responsibility on each individual throughout the contract, and to provide greater client control.

Design

[edit]

In the industrialized world, construction usually involves the translation of designs into reality. Most commonly (i.e.: in a design-bid-build project), the design team is employed by (i.e. in contract with) the property owner. Depending upon the type of project, a design team may include architects, civil engineers, mechanical engineers, electrical engineers, structural engineers, fire protection engineers, planning consultants, architectural consultants, and archaeological consultants. A 'lead designer' will normally be identified to help coordinate different disciplinary inputs to the overall design. This may be aided by integration of previously separate disciplines (often undertaken by separate firms) into multi-disciplinary firms with experts from all related fields,[24] or by firms establishing relationships to support design-build processes.

The increasing complexity of construction projects creates the need for design professionals trained in all phases of a project's life-cycle and develop an appreciation of the asset as an advanced technological system requiring close integration of many sub-systems and their individual components, including sustainability. For buildings, building engineering is an emerging discipline that attempts to meet this new challenge.

Traditionally, design has involved the production of sketches, architectural and engineering drawings, and specifications. Until the late 20th century, drawings were largely hand-drafted; adoption of computer-aided design (CAD) technologies then improved design productivity, while the 21st-century introduction of building information modeling (BIM) processes has involved the use of computer-generated models that can be used in their own right or to generate drawings and other visualisations as well as capturing non-geometric data about building components and systems.

On some projects, work on-site will not start until design work is largely complete; on others, some design work may be undertaken concurrently with the early stages of on-site activity (for example, work on a building's foundations may commence while designers are still working on the detailed designs of the building's internal spaces). Some projects may include elements that are designed for off-site construction (see also prefabrication and modular building) and are then delivered to the site ready for erection, installation or assembly.

On-site construction

[edit]
On-site foundation construction.

Once contractors and other relevant professionals have been appointed and designs are sufficiently advanced, work may commence on the project site. Typically, a construction site will include a secure perimeter to restrict unauthorised access, site access control points, office and welfare accommodation for personnel from the main contractor and other firms involved in the project team, and storage areas for materials, machinery and equipment. According to the McGraw-Hill Dictionary of Architecture and Construction's definition, construction may be said to have started when the first feature of the permanent structure has been put in place, such as pile driving, or the pouring of slabs or footings.[25]

Commissioning and handover

[edit]

Commissioning is the process of verifying that all subsystems of a new building (or other assets) work as intended to achieve the owner's project requirements and as designed by the project's architects and engineers.

Defects liability period

[edit]

A period after handover (or practical completion) during which the owner may identify any shortcomings in relation to the building specification ('defects'), with a view to the contractor correcting the defect.[26]

Maintenance, repair and improvement

[edit]

Maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, governmental, and residential installations.[27][28]

Demolition

[edit]

Demolition is the discipline of safely and efficiently tearing down buildings and other artificial structures. Demolition contrasts with deconstruction, which involves taking a building apart while carefully preserving valuable elements for reuse purposes (recycling – see also circular economy).

Industry scale and characteristics

[edit]

Economic activity

[edit]
Helicopter view of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility (OSF) construction site

The output of the global construction industry was worth an estimated $10.8 trillion in 2017, and in 2018 was forecast to rise to $12.9 trillion by 2022,[29] and to around $14.8 trillion in 2030.[3] As a sector, construction accounts for more than 10% of global GDP (in developed countries, construction comprises 6–9% of GDP),[30] and employs around 7% of the total employed workforce around the globe[31] (accounting for over 273 million full- and part-time jobs in 2014).[32] Since 2010,[33] China has been the world's largest single construction market.[34] The United States is the second largest construction market with a 2018 output of $1.581 trillion.[35]

  • In the United States in February 2020, around $1.4 trillion worth of construction work was in progress, according to the Census Bureau, of which just over $1.0 trillion was for the private sector (split roughly 55:45% between residential and nonresidential); the remainder was public sector, predominantly for state and local government.[36]
  • In Armenia, the construction sector experienced growth during the latter part of 2000s. Based on National Statistical Service, Armenia's construction sector generated approximately 20% of Armenia's GDP during the first and second quarters of 2007. In 2009, according to the World Bank, 30% of Armenia's economy was from construction sector.[37]
  • In Vietnam, the construction industry plays an important role in the national economy.[38][39][40] The Vietnamese construction industry has been one of the fastest growing in the Asia-Pacific region in recent years.[41][42] The market was valued at nearly $60 billion in 2021.[43] In the first half of 2022, Vietnam's construction industry growth rate reached 5.59%.[43][44][45] In 2022, Vietnam's construction industry accounted for more than 6% of the country's GDP, equivalent to over 589.7 billion Vietnamese dong.[46][47] The industry of industry and construction accounts for 38.26% of Vietnam's GDP.[48][49][50] At the same time, the industry is one of the most attractive industries for foreign direct investment (FDI) in recent years.[51][52][53]

Construction is a major source of employment in most countries; high reliance on small businesses, and under-representation of women are common traits. For example:

  • In the US, construction employed around 11.4m people in 2020, with a further 1.8m employed in architectural, engineering, and related professional services – equivalent to just over 8% of the total US workforce.[54] The construction workers were employed in over 843,000 organisations, of which 838,000 were privately held businesses.[55] In March 2016, 60.4% of construction workers were employed by businesses with fewer than 50 staff.[56] Women are substantially underrepresented (relative to their share of total employment), comprising 10.3% of the US construction workforce, and 25.9% of professional services workers, in 2019.[54]
  • The United Kingdom construction sector contributed £117 billion (6%) to UK GDP in 2018, and in 2019 employed 2.4m workers (6.6% of all jobs). These worked either for 343,000 'registered' construction businesses, or for 'unregistered' businesses, typically self-employed contractors;[57] just over one million small/medium-sized businesses, mainly self-employed individuals, worked in the sector in 2019, comprising about 18% of all UK businesses.[58] Women comprised 12.5% of the UK construction workforce.[59]

According to McKinsey research, productivity growth per worker in construction has lagged behind many other industries across different countries including in the United States and in European countries. In the United States, construction productivity per worker has declined by half since the 1960s.[60]

Construction GVA by country

[edit]
List of countries with the largest construction Gross Value Added in 2018
Economy
Construction GVA in 2018 (billions in USD)
(01)  China
934.2
(02)  United States
839.1
(03)  Japan
275.5
(04)  India
201.2
(05)  Germany
180.5
(06)  United Kingdom
154.7
(07)  France
138.7
(08)  Canada
125.4
(09)  Russia
121.2
(10)  Australia
111.8
(11)  Indonesia
109.7
(12)  South Korea
93.0
(13)  Brazil
92.6
(14)  Mexico
89.0
(15)  Spain
80.0
(16)  Italy
78.9
(17)  Turkey
55.3
(18)  Saudi Arabia
40.2
(19)  Netherlands
39.5
(20)  Poland
39.4
(21)  Switzerland
36.3
(22)  United Arab Emirates
34.5
(23)  Sweden
33.3
(24)  Austria
27.2
(25)  Qatar
27.0

The twenty-five largest countries in the world by construction GVA (2018)[61]

Employment

[edit]
Ironworkers erecting the steel frame of a new building at Massachusetts General Hospital in Boston
A truck operator at Al Gamil, the largest construction company in Djibouti

Some workers may be engaged in manual labour[62] as unskilled or semi-skilled workers; they may be skilled tradespeople; or they may be supervisory or managerial personnel. Under safety legislation in the United Kingdom, for example, construction workers are defined as people "who work for or under the control of a contractor on a construction site";[63] in Canada, this can include people whose work includes ensuring conformance with building codes and regulations, and those who supervise other workers.[64]

Laborers comprise a large grouping in most national construction industries. In the United States, for example, in May 2021 the construction sector employed just over 7.5 million people, of whom just over 820,000 were laborers, while 573,000 were carpenters, 508,000 were electricians, 258,000 were equipment operators and 230,000 were construction managers.[65] Like most business sectors, there is also substantial white-collar employment in construction – 681,000 US workers were recorded by the United States Department of Labor as in 'office and administrative support occupations' in May 2021.[66]

Large-scale construction requires collaboration across multiple disciplines. A project manager normally manages the budget on the job, and a construction manager, design engineer, construction engineer or architect supervises it. Those involved with the design and execution must consider zoning requirements and legal issues, environmental impact of the project, scheduling, budgeting and bidding, construction site safety, availability and transportation of building materials, logistics, and inconvenience to the public, including those caused by construction delays.

Some models and policy-making organisations promote the engagement of local labour in construction projects as a means of tackling social exclusion and addressing skill shortages. In the UK, the Joseph Rowntree Foundation reported in 2000 on 25 projects which had aimed to offer training and employment opportunities for locally based school leavers and unemployed people.[67] The Foundation published "a good practice resource book" in this regard at the same time.[68] Use of local labour and local materials were specified for the construction of the Danish Storebaelt bridge, but there were legal issues which were challenged in court and addressed by the European Court of Justice in 1993. The court held that a contract condition requiring use of local labour and local materials was incompatible with EU treaty principles.[69] Later UK guidance noted that social and employment clauses, where used, must be compatible with relevant EU regulation.[70] Employment of local labour was identified as one of several social issues which could potentially be incorporated in a sustainable procurement approach, although the interdepartmental Sustainable Procurement Group recognised that "there is far less scope to incorporate [such] social issues in public procurement than is the case with environmental issues".[71]

There are many routes to the different careers within the construction industry. There are three main tiers of construction workers based on educational background and training, which vary by country:

Unskilled and semi-skilled workers

[edit]

Unskilled and semi-skilled workers provide general site labor, often have few or no construction qualifications, and may receive basic site training.

Skilled tradespeople

[edit]

Skilled tradespeople have typically served apprenticeships (sometimes in labor unions) or received technical training; this group also includes on-site managers who possess extensive knowledge and experience in their craft or profession. Skilled manual occupations include carpenters, electricians, plumbers, ironworkers, heavy equipment operators and masons, as well as those involved in project management. In the UK these require further education qualifications, often in vocational subject areas, undertaken either directly after completing compulsory education or through "on the job" apprenticeships.[72]

Professional, technical or managerial personnel

[edit]

Professional, technical and managerial personnel often have higher education qualifications, usually graduate degrees, and are trained to design and manage construction processes. These roles require more training as they demand greater technical knowledge, and involve more legal responsibility. Example roles (and qualification routes) include:

Safety

[edit]
At-risk workers without appropriate safety equipment

Construction is one of the most dangerous occupations in the world, incurring more occupational fatalities than any other sector in both the United States and in the European Union.[4][73] In the US in 2019, 1,061, or about 20%, of worker fatalities in private industry occurred in construction.[4] In 2017, more than a third of US construction fatalities (366 out of 971 total fatalities) were the result of falls;[74] in the UK, half of the average 36 fatalities per annum over a five-year period to 2021 were attributed to falls from height.[75] Proper safety equipment such as harnesses, hard hats and guardrails and procedures such as securing ladders and inspecting scaffolding can curtail the risk of occupational injuries in the construction industry.[76] Other major causes of fatalities in the construction industry include electrocution, transportation accidents, and trench cave-ins.[77]

Other safety risks for workers in construction include hearing loss due to high noise exposure, musculoskeletal injury, chemical exposure, and high levels of stress.[78] Besides that, the high turnover of workers in construction industry imposes a huge challenge of accomplishing the restructuring of work practices in individual workplaces or with individual workers.[citation needed] Construction has been identified by the National Institute for Occupational Safety and Health (NIOSH) as a priority industry sector in the National Occupational Research Agenda (NORA) to identify and provide intervention strategies regarding occupational health and safety issues.[79][80] A study conducted in 2022 found “significant effect of air pollution exposure on construction-related injuries and fatalities”, especially with the exposure of nitrogen dioxide.[81]

Sustainability

[edit]

Sustainability is an aspect of "green building", defined by the United States Environmental Protection Agency (EPA) as "the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from siting to design, construction, operation, maintenance, renovation and deconstruction."[82]

Decarbonising construction

[edit]

The construction industry may require transformation at pace and at scale if it is to successfully contribute to achieving the target set out in The Paris Agreement of limiting global temperature rise to 1.5C above industrial levels.[83][84] The World Green Building Council has stated the buildings and infrastructure around the world can reach 40% less embodied carbon emissions but that this can only be achieved through urgent transformation.[85][86]

Conclusions from industry leaders have suggested that the net zero transformation is likely to be challenging for the construction industry, but it does present an opportunity. Action is demanded from governments, standards bodies, the construction sector, and the engineering profession to meet the decarbonising targets.[87]

In 2021, the National Engineering Policy Centre published its report Decarbonising Construction: Building a new net zero industry,[87] which outlined key areas to decarbonise the construction sector and the wider built environment. This report set out around 20 different recommendations to transform and decarbonise the construction sector, including recommendations for engineers, the construction industry and decision makers, plus outlined six-overarching ‘system levers’ where action taken now will result in rapid decarbonisation of the construction sector.[87] These levels are:

  • Setting and stipulating progressive targets for carbon reduction
  • Embedding quantitative whole-life carbon assessment into public procurement
  • Increasing design efficiency, materials reuse and retrofit of buildings
  • Improving whole-life carbon performance
  • Improving skills for net zero
  • Adopting a joined up, systems approach to decarbonisation across the construction sector and with other sectors

Progress is being made internationally to decarbonise the sector including improvements to sustainable procurement practice such as the CO2 performance ladder in the Netherlands and the Danish Partnership for Green Public Procurement.[88][89] There are also now demonstrations of applying the principles of circular economy practices in practice such as Circl, ABN AMRO's sustainable pavilion and the Brighton Waste House.[90][91][92]

See also

[edit]

icon Architecture portal icon Engineering portal

Notes

[edit]
  1. ^ a b c In the UK, the Chartered Engineer qualification is controlled by the Engineering Council, and is often achieved through membership of the relevant professional institution (ICE, CIBSE, IStructE, etc).

References

[edit]
  1. ^ "Construction" def. 1.a. 1.b. and 1.c. Oxford English Dictionary Second Edition on CD-ROM (v. 4.0) Oxford University Press 2009
  2. ^ "Construction". Online Etymology Dictionary http://www.etymonline.com/index.php?term=construction accessed 3/6/2014
  3. ^ a b "Global Construction Report 2030". GCP DBA. Retrieved 28 October 2021.
  4. ^ a b c "Commonly Used Statistics: Worker fatalities". Occupational Safety and Health Administration. United States Department of Labor. Retrieved 1 March 2021.
  5. ^ Knecht B. Fast-track construction becomes the norm. Architectural Record.
  6. ^ Chitkara, pp. 9–10.
  7. ^ Halpin, pp. 15–16.
  8. ^ "The Top 250", Engineering News-Record, September 1, 2014
  9. ^ "The Top 400" (PDF), Engineering News-Record, May 26, 2014
  10. ^ US Census Bureau,NAICS Search 2012 NAICS Definition, Sector 23 – Construction
  11. ^ US Department of Labor (OSHA), Division C: Construction
  12. ^ Proctor, J., What is a Compulsory Purchase Order?, Bidwells, published 10 June 2018, accessed 26 November 2023
  13. ^ Marshall, Duncan; Worthing, Derek (2006). The Construction of Houses (4th ed.). London: EG Books. pp. 1–8. ISBN 978-0-08-097112-4.{{cite book}}: CS1 maint: date and year (link)
  14. ^ "History and Heritage of Civil Engineering". ASCE. Archived from the original on 16 February 2007. Retrieved 8 August 2007.
  15. ^ "What is Civil Engineering". Institution of Civil Engineers. Retrieved 15 May 2017.
  16. ^ Mosey, David (2019). Collaborative Construction Procurement and Improved Value. John Wiley & Sons. ISBN 9781119151913.
  17. ^ Willmott Dixon, Working in live environments, accessed 6 May 2023
  18. ^ Mason, Jim (2016). Construction Law: From Beginner to Practitioner. Routledge. ISBN 9781317391777.
  19. ^ Tabei, Sayed Mohammad Amin; Bagherpour, Morteza; Mahmoudi, Amin (2019-03-19). "Application of Fuzzy Modelling to Predict Construction Projects Cash Flow". Periodica Polytechnica Civil Engineering. doi:10.3311/ppci.13402. ISSN 1587-3773. S2CID 116421818.
  20. ^ "North County News – San Diego Union Tribune". www.nctimes.com.
  21. ^ "Global construction industry faces growing threat of economic crime". pwc. pwc. Retrieved 16 September 2015.
  22. ^ Alsever, Jennifer (December 2019). "Bots Start Building". Fortune (Paper). New York, New York: Fortune Media (USA) Corporation. p. 36. ISSN 0015-8259.
  23. ^ Cronin, Jeff (2005). "S. Carolina Court to Decide Legality of Design-Build Bids". Construction Equipment Guide. Archived from the original on 2006-10-19. Retrieved 2008-01-04.
  24. ^ Dynybyl, Vojtěch; Berka, Ondrej; Petr, Karel; Lopot, František; Dub, Martin (2015). The Latest Methods of Construction Design. Springer. ISBN 9783319227627.
  25. ^ McGraw-Hill Dictionary of Architecture and Construction, "Start of construction", accessed 8 September 2020
  26. ^ Designing Buildings Wiki, Defects liability period DLP, last updated 17 February 2022, accessed 16 May 2022
  27. ^ "Defense Logistics Agency". DLA.mil. Retrieved 5 August 2016.
  28. ^ "European Federation of National Maintenance Societies". EFNMS.org. Retrieved 5 August 2016. All actions which have the objective of retaining or restoring an item in or to a state in which it can perform its required function. These include the combination of all technical and corresponding administrative, managerial, and supervision actions.
  29. ^ "Global construction set to rise to US$12.9 trillion by 2022, driven by Asia Pacific, Africa and the Middle East". Building Design and Construction. 8 October 2018. Retrieved 29 April 2020.
  30. ^ Chitkara, K. K. (1998), Construction Project Management, New Delhi: Tata McGraw-Hill Education, p. 4, ISBN 9780074620625, retrieved May 16, 2015
  31. ^ "Global Construction: insights (26 May 2017)". Potensis. Retrieved 30 April 2020.
  32. ^ "Construction Sector Employment in Low-Income Countries: Size of the Sector". ICED. Retrieved 3 May 2020.
  33. ^ "Which countries are investing the most in construction?". PBC Today. 25 March 2019. Retrieved 30 April 2020.
  34. ^ Roumeliotis, Greg (3 March 2011). "Global construction growth to outpace GDP this decade – PwC". Reuters Economic News. Archived from the original on 6 November 2020. Retrieved 29 April 2020.
  35. ^ Global Construction Perspectives & Construction Economics (2019), Future of Consultancy: Global Export Strategy for UK Consultancy and Engineering, ACE, London.
  36. ^ Value of Construction Put in Place at a Glance. United States Census Bureau. Accessed: 29 April 2020. Also see Manufacturing & Construction Statistics for more information.
  37. ^ "Armenian Growth Still In Double Digits", Armenia Liberty (RFE/RL), September 20, 2007.
  38. ^ "Tầm quan trọng của ngành xây dựng đối với sự phát triển của Vùng kinh tế trọng điểm phía Nam". Tạp chí Kinh tế và Dự báo - Bộ Kế hoạch và Đầu tư (in Vietnamese). Retrieved 2024-02-01.
  39. ^ "Xây dựng là lĩnh vực quan trọng, mang tính chiến lược, có vai trò rất lớn trong phát triển kinh tế - xã hội". toquoc.vn (in Vietnamese). Retrieved 2024-02-01.
  40. ^ "Ngành Xây dựng - hành trình 60 năm phát triển". Cục giám định nhà nước về chất lượng công trình xây dựng (in Vietnamese). Retrieved 2024-02-01.
  41. ^ "Topic: Construction industry worldwide". Expert Market Research. Retrieved 2024-02-01.
  42. ^ "Kinh tế Việt Nam 2023: Nhiều điểm sáng nổi bật". Vietnam Business Forum – Liên đoàn Thương mại và Công nghiệp Việt Nam-Kinh tế - Thị trường. 2023-04-12. Retrieved 2024-02-01.
  43. ^ a b "The Growth of the Construction Industry in Vietnam". www.researchinvietnam.com. Retrieved 2024-02-01.
  44. ^ "Tốc độ tăng trưởng ngành xây dựng tăng 4,47% so với cùng kỳ". baochinhphu.vn (in Vietnamese). 2023-07-06. Retrieved 2024-02-01.
  45. ^ "9 tháng năm 2022, ngành Xây dựng tăng trưởng 5%-5,6% so với cùng kỳ năm trước". Tạp chí Kinh tế và Dự báo - Bộ Kế hoạch và Đầu tư (in Vietnamese). Retrieved 2024-02-01.
  46. ^ "Topic: Construction industry in Vietnam". Statista. Retrieved 2024-02-01.
  47. ^ "Kinh tế Việt Nam năm 2022 và triển vọng năm 2023". www.mof.gov.vn. Retrieved 2024-02-01.
  48. ^ "World Bank Open Data". World Bank Open Data. Retrieved 2024-02-01.
  49. ^ Hoàng, Hiếu (2022-02-12). "Chuyển nhà Hà Nội". kienvang.vn (in Vietnamese). Retrieved 2024-02-01.
  50. ^ Ngọc, Dương (2023-02-25). "Tăng trưởng GDP: Kết quả 2022, kỳ vọng 2023". Nhịp sống kinh tế Việt Nam & Thế giới (in Vietnamese). Retrieved 2024-02-01.
  51. ^ "Vietnam attracts over 39,100 FDI projects with registered capital of nearly 469 billion USD so far | Business | Vietnam+ (VietnamPlus)". VietnamPlus. 2024-01-15. Retrieved 2024-02-01.
  52. ^ "Đầu tư trực tiếp nước ngoài và vấn đề phát triển kinh tế - xã hội ở Việt Nam". mof.gov.vn. Retrieved 2024-02-01.
  53. ^ "Đầu tư trực tiếp nước ngoài vào lĩnh vực xây dựng và bất động sản - thực trạng và những vấn đề đặt ra - Tạp chí Cộng sản". tapchicongsan.org.vn. Retrieved 2024-02-01.
  54. ^ a b "Labor Force Statistics from the Current Population Survey". US Bureau of Labor Statistics. 2019. Retrieved 30 April 2020.
  55. ^ "Industries at a glance: Construction: NAICS 23". US Bureau of Labor Statistics. US Bureau of Labor Statistics.
  56. ^ "TED: The Economics Daily (March 3, 2017)". US Bureau of Labor Statistics. US Bureau of Labor Statistics. Retrieved 30 April 2020.
  57. ^ Rhodes, Chris (16 December 2019). Briefing Paper: Construction industry: statistics and policy. London: House of Commons Library.
  58. ^ Rhodes, Chris (16 December 2019). Briefing Paper: Business statistics. London: House of Commons Library.
  59. ^ "Construction industry just 12.5% women and 5.4% BAME". GMB Union. 24 October 2019. Retrieved 30 April 2020.
  60. ^ "The construction industry's productivity problem". The Economist. Retrieved 2017-08-21.
  61. ^ Source: National Accounts Estimates of Main Aggregates | United Nations Statistics Division. Gross Value Added by Kind of Economic Activity at current prices – US dollars. Retrieved 26 June 2020.
  62. ^ "Construction worker definition and meaning | Collins English Dictionary". www.collinsdictionary.com. Retrieved 2018-06-09.
  63. ^ "Are you a construction worker? Construction (Design and Management) Regulations 2015 (CDM 2015) – What you need to know". Health and Safety Executive. HSE. Retrieved 22 April 2022.
  64. ^ "Construction Worker – General". Canadian Centre for Occupational Health and Safety. CCOHS. Retrieved 22 April 2022.
  65. ^ "Construction: NAICS 23". US Bureau of Labor Statistics. United States Department of Labor. Retrieved 22 April 2022.
  66. ^ "Tables – Occupational Employment and Wage Statistics: National industry-specific and by ownership". US Bureau of Labor Statistics. United States Department of Labor. Retrieved 22 April 2022.
  67. ^ Joseph Rowntree Foundation, Local labour in construction: tackling social exclusion and skill shortages, published November 2000, accessed 17 February 2024
  68. ^ Macfarlane, R., Using local labour in construction: A good practice resource book, The Policy Press/Joseph Rowntree Foundation, published 17 November 2000, accessed 17 February 2024
  69. ^ Heard, E., Evaluation and the audit trail, Bevan Brittan, published 8 June 2016, accessed 31 December 2023
  70. ^ Dawn Primarolo, Construction Industry: Treasury written question – answered at on 19 April 2004, TheyWorkForYou, accessed 29 April 2024
  71. ^ Sustainable Procurement Group, REPORT AND RECOMMENDATIONS OF THE SUSTAINABLE PROCUREMENT GROUP, January 2003, paragraph 8.4, accessed 29 April 2024
  72. ^ Wood, Hannah (17 January 2012). "UK Construction Careers, Certifications/Degrees and occupations". TH Services. Archived from the original on 4 March 2012. Retrieved 4 March 2012.
  73. ^ "Health and safety at work statistics". eurostat. European Commission. Retrieved 3 August 2012.
  74. ^ Garza, Elizabeth (10 April 2019). "Construction Fall Fatalities Still Highest Among All Industries: What more can we do? (April 10, 2019)". NIOSH Science blog. Centers for Disease Control and Prevention. Retrieved 1 March 2021.
  75. ^ "Construction statistics in Great Britain, 2021" (PDF). HSE. Health & Safety Executive. Archived from the original (PDF) on 26 January 2022. Retrieved 19 April 2022.
  76. ^ "OSHA's Fall Prevention Campaign". Occupational Safety and Health Administration. Retrieved 6 August 2012.
  77. ^ "The Construction Chart Book: The US Construction Industry and its Workers" (PDF). CPWR, 2013. Archived from the original (PDF) on 2016-05-08. Retrieved 2014-04-08.
  78. ^ Swanson, Naomi; Tisdale-Pardi, Julie; MacDonald, Leslie; Tiesman, Hope M. (13 May 2013). "Women's Health at Work". National Institute for Occupational Safety and Health. Retrieved 21 January 2015.
  79. ^ "CDC – NIOSH Program Portfolio : Construction Program". www.cdc.gov. 2018-04-05. Retrieved 2018-04-07.
  80. ^ "CDC – NIOSH – NORA Construction Sector Council". www.cdc.gov. 2017-12-01. Retrieved 2018-04-07.
  81. ^ "Air pollution increases the likelihood of accidents in construction sites". London School of Economics Business Review. 6 Sep 2023. Retrieved 15 Sep 2023.
  82. ^ "Basic Information | Green Building |US EPA". archive.epa.gov. Retrieved 2018-12-11.
  83. ^ "The Paris Agreement". United Nations.
  84. ^ Donati, Angelica Krystle (February 6, 2023). "Decarbonisation And The Green Transition In Construction: Logical, Cost-Effective, And Inevitable". Forbes.
  85. ^ "Bringing embodied carbon upfront". World Green Building Council.
  86. ^ "Bringing embodied carbon upfront" (PDF). World Green Building Council.
  87. ^ a b c "Decarbonising construction". National Engineering Policy Centre.
  88. ^ "What is the Ladder". The CO2 Performance Ladder.
  89. ^ "Strategy for green public procurement". Economy Agency of Denmark.
  90. ^ "The Forum on Sustainable Procurement". Ministry of Environment Denmark. Archived from the original on 2023-05-24. Retrieved 2023-05-24.
  91. ^ Chua, Geraldine (May 4, 2018). "Designing the Dutch way". Architecture & Design.
  92. ^ Wainwright, Oliver (7 July 2014). "The house that 20,000 toothbrushes built". The Guardian.

How to do a house layout


Frequently Asked Questions

We're addressing environmental sustainability by incorporating eco-friendly practices in our traffic management. We use solar-powered signs and LED lighting to reduce our carbon footprint, ensuring our operations are as green as they can be.

We quickly adapt to unexpected weather by adjusting our traffic management plans to ensure safety and minimize disruptions. This involves proactive monitoring and deploying additional resources if necessary to keep everything running smoothly.

We're well-equipped to handle services in unique or challenging areas, including mountain roads or bridges. Our team's expertise ensures safety and efficiency, even in the most demanding environments, meeting all necessary compliance standards.