Matching Compatibility of Controls and Existing Wiring

Matching Compatibility of Controls and Existing Wiring

Importance of Safety in Mobile Home HVAC Work

Mobile homes, often celebrated for their affordability and convenience, present unique challenges when it comes to wiring configurations. Filters should be checked monthly to maintain air quality and system efficiency hvac unit for mobile home crawl space. Understanding the existing wiring systems within these structures is crucial, especially when considering upgrades or modifications to accommodate new controls and technologies. This essay explores the typical wiring setups found in mobile homes and discusses the importance of matching control systems with these configurations to ensure safety and functionality.


A common characteristic of mobile home wiring is its simplicity compared to traditional residential buildings. Most mobile homes utilize a combination of Romex (non-metallic sheathed) cables for interior circuits, which are cost-effective and easy to install. These wires typically run through the walls and ceiling spaces, connecting various fixtures and outlets throughout the home. Given that many mobile homes were built several decades ago, some may also feature aluminum wiring instead of copper, which was commonly used during particular periods due to cost considerations.


The electrical panel in a mobile home is usually smaller than that in a conventional house, reflecting the reduced load requirements of these compact living spaces. The panel distributes power through branch circuits protected by breakers or fuses. It's essential to assess this setup when planning any new installations or upgrades because exceeding the capacity of an older panel can lead to overloads and potential hazards.


When considering new controls-such as smart home devices or updated HVAC systems-it is vital to ensure compatibility with existing wiring configurations. Smart thermostats, for example, may require a C-wire (common wire) for power, something older mobile home systems might lack. In such cases, homeowners might need to explore alternative solutions like using an adapter or installing additional wiring.


Moreover, understanding grounding practices in mobile homes is crucial since improper grounding can pose serious safety risks. Mobile homes should have a reliable ground connection at both the main service panel and individual outlets to prevent electrical shocks and equipment damage.


Matching compatibility between controls and existing wiring involves assessing both current carrying capacity and connectivity options. For instance, integrating dimmer switches requires checking whether the current light fixtures support dimming capabilities without causing flicker or reduced lifespan.


To successfully navigate these challenges, homeowners should consider consulting with licensed electricians who are experienced with mobile home electrical systems. These professionals can provide detailed assessments of existing configurations and recommend appropriate upgrades or modifications that align with modern standards while ensuring safety compliance.


In conclusion, understanding existing wiring configurations in mobile homes is critical when matching compatibility with new control systems. This involves not only a technical assessment but also strategic planning to ensure seamless integration without compromising safety or functionality. As technology advances continue to influence how we interact with our living spaces, maintaining awareness of these factors will help optimize comfort while safeguarding against potential electrical issues in mobile homes.

In the realm of electrical engineering and system design, the significance of compatibility between controls and wiring cannot be overstated. As we advance in technology, the integration of sophisticated control systems with existing infrastructures has become a common challenge. Ensuring that these components work harmoniously together is not just a matter of convenience; it is essential for safety, efficiency, and reliability.


Compatibility between controls and wiring involves several key aspects: electrical specifications, communication protocols, and physical connections. Firstly, electrical specifications such as voltage levels, current capacity, and power ratings must align. Mismatches here can lead to malfunctions or even hazardous situations like short circuits or fires. For example, connecting a device that requires a higher voltage than what the existing wiring can provide may result in insufficient performance or damage to the equipment.


Moreover, communication protocols play a crucial role in modern systems where digital controls are predominant. Different manufacturers often use varying standards for data transmission. When integrating new control units with pre-existing wiring systems, engineers must ensure that they share compatible communication protocols to facilitate seamless information exchange. This consideration is vital for maintaining operational integrity and enabling features like remote monitoring and automation.


Physical connections also demand attention during integration efforts. The connectors used need to be compatible in terms of size, shape, and pin configuration. Any discrepancies might necessitate adapters or redesigns which could complicate installations or introduce potential points of failure.


Beyond technical concerns, there are economic implications tied to compatibility issues as well. Retrofitting an incompatible system can incur significant costs due to additional materials or labor required for modifications. Conversely, ensuring compatibility from the outset can lead to smoother installations and fewer unexpected expenses down the line.


Ultimately, fostering compatibility between controls and existing wiring supports sustainability by extending the life cycle of infrastructure through adaptive reuse rather than complete overhauls. It allows for incremental upgrades that keep pace with technological advancements without discarding still-functional components prematurely.


In conclusion, matching the compatibility of controls with existing wiring is an essential practice within engineering disciplines that safeguards both functionality and safety while optimizing resources economically and sustainably. As technology continues to evolve rapidly around us-demanding ever more sophisticated integrations-the importance of this alignment will only continue to grow in significance across industries worldwide.

Innovative Solutions for Upgrading Outdated Mobile Home HVAC Systems

Innovative Solutions for Upgrading Outdated Mobile Home HVAC Systems

Maintaining long-term efficiency and performance in mobile home HVAC systems, especially when dealing with outdated models, requires an innovative approach that combines both traditional maintenance practices and modern technological upgrades.. Mobile homes often present unique challenges due to space constraints and the original design of their heating, ventilation, and air conditioning systems.

Posted by on 2024-12-30

Top Safety Guidelines for Mobile Home HVAC Technicians on the Job

Top Safety Guidelines for Mobile Home HVAC Technicians on the Job

In the high-stakes world of mobile home HVAC technicians, safety isn't just a guideline—it's a lifeline.. As these professionals navigate the complexities of heating, ventilation, and air conditioning systems within confined mobile homes, they must always be prepared for emergencies or accidents that can occur on the job.

Posted by on 2024-12-30

Steps to Retrofit Legacy HVAC Units While Maintaining Safety Compliance

Steps to Retrofit Legacy HVAC Units While Maintaining Safety Compliance

Retrofitting legacy HVAC units presents unique challenges and opportunities for modernizing building infrastructure while adhering to safety compliance.. As buildings age, their heating, ventilation, and air conditioning systems often become inefficient and outdated.

Posted by on 2024-12-30

Essential Safety Gear and Equipment for Technicians

In the modern era, heating, ventilation, and air conditioning (HVAC) systems have become an essential part of ensuring comfort in both residential and commercial spaces. One of the most significant challenges that arise when dealing with HVAC systems is the compatibility of controls with existing wiring. As technology advances, new HVAC controls offer enhanced features such as programmable settings and remote access via smart devices. However, integrating these advanced controls into older systems can present several hurdles.


Firstly, the existing wiring infrastructure often poses a significant barrier to compatibility. Older buildings may have outdated wiring that does not support the latest HVAC control technologies. This can result in mismatched connections or insufficient power delivery to operate new devices effectively. In many cases, this necessitates a complete rewiring of the system, which can be both time-consuming and costly. Additionally, identifying the specific requirements of newer HVAC controls versus what is available in existing setups requires a nuanced understanding of electrical engineering principles.


Moreover, there is often a lack of standardization across different HVAC manufacturers. Each company may have its proprietary protocols for how their controls interface with HVAC units. This lack of uniformity can lead to issues when trying to replace or upgrade components from different manufacturers within the same system. The complexity is further compounded when integrating smart home devices that require seamless communication between various elements in a building's ecosystem.


Another challenge lies in the skill gap among technicians who install and maintain these systems. As technology evolves rapidly, there's an ongoing need for technicians to update their knowledge about new control systems and how they interact with existing infrastructures. Without proper training and understanding, there's a risk of improper installations leading to inefficient system performance or even damage.


The solution to these challenges involves a multi-faceted approach. Standardizing communication protocols across different brands could greatly ease compatibility issues and make it simpler for consumers to mix-and-match components without fear of incompatibility. Furthermore, investing in technician training programs would ensure that professionals are well-equipped to handle diverse scenarios involving old wiring and new technologies.


Finally, educating homeowners and building managers on the importance of periodic system evaluations can preemptively address potential compatibility problems before they escalate into larger issues. By conducting regular assessments of their HVAC systems' infrastructure against current technology trends, stakeholders can make informed decisions about necessary upgrades or adjustments.


In conclusion, matching compatibility between HVAC controls and existing wiring is an intricate task fraught with several challenges related to outdated infrastructure, lack of standardization among manufacturers, and skills gaps among technicians. Addressing these challenges requires collaboration between industry stakeholders-ranging from manufacturers adopting universal standards to educational initiatives aimed at upskilling workers-in order to create more harmonious integration possibilities for future advancements in HVAC technology.

Essential Safety Gear and Equipment for Technicians

Proper Procedures for Handling Refrigerants and Chemicals

Assessing the compatibility of controls with existing wiring is crucial in any electrical or technological installation. Whether you're upgrading a home automation system, installing new lighting controls, or integrating advanced security systems, ensuring that the controls are compatible with existing wiring can prevent future malfunctions and ensure smooth operation. The process requires careful attention to detail and a systematic approach to evaluate all potential challenges.


The first step in assessing compatibility is to conduct a thorough evaluation of the existing wiring infrastructure. This involves examining the age, condition, and specifications of the current wiring setup. Older buildings may have outdated wiring that doesn't support modern control systems due to differences in voltage requirements or technology standards. Identifying these discrepancies early on allows for informed decision-making about whether upgrades or replacements are necessary.


Next, it's essential to review the specifications of the new control systems being considered for installation. Understanding their power requirements, communication protocols, and connectivity features helps determine if they can be seamlessly integrated with what's already in place. For instance, some modern control systems rely on digital signals rather than analog ones used in older setups. Recognizing such differences is key to ensuring proper functionality.


Compatibility also hinges on understanding how new systems will interact with existing components beyond just electrical wiring-this includes switches, sensors, and other peripherals that form part of the broader network. Assessing these interactions ensures that all parts can communicate effectively without causing interference or operational errors.


Another critical aspect is compliance with safety standards and regulations. Electrical installations must adhere to local codes and guidelines designed to protect both property and individuals from hazards like short circuits or overloads. Verifying that both new controls and old wiring meet these standards is vital before proceeding with any integration efforts.


Once compatibility has been assessed through these evaluations, testing becomes an indispensable step before full-scale implementation. Conducting small-scale trials allows technicians to identify unforeseen issues in a controlled environment where they can be quickly addressed without affecting overall system performance.


Finally, documenting every step taken during this assessment process provides invaluable reference material for future upgrades or troubleshooting endeavors. Clear records help maintain transparency and facilitate easier transitions when further modifications are needed down the line.


In conclusion, assessing the compatibility of controls with existing wiring is not merely a technical task but an essential exercise in ensuring reliability and safety within any electrical system upgrade or installation project. By taking methodical steps-ranging from evaluating current infrastructures to conducting compliance checks-stakeholders can achieve seamless integrations that enhance functionality while minimizing risks associated with incompatibility issues.

Electrical Safety Protocols for Mobile Home HVAC Work

Integrating new controls with existing wiring is a task that requires careful consideration and planning, particularly when it comes to ensuring compatibility between the old and new systems. This endeavor is akin to seamlessly blending tradition with innovation, where each component must harmoniously work together to achieve optimal functionality.


At its core, matching compatibility of controls and existing wiring involves understanding both the limitations and capabilities of the current infrastructure. Existing wiring often reflects the technological standards of its time, which may not always align with modern control systems designed for enhanced efficiency and functionality. Therefore, the first step in successfully integrating new controls lies in conducting a thorough assessment of the existing setup. This includes identifying the type of wiring used, understanding its capacity limits, evaluating its condition, and recognizing any potential challenges or constraints it might present.


Once a comprehensive understanding is achieved, the next phase involves selecting compatible control systems that can effectively communicate with the existing wiring framework. Compatibility here refers not only to physical connections but also to signal integrity and electrical characteristics. The new controls must be chosen based on their ability to operate within these established parameters without compromising performance or safety. In many cases, this might involve opting for adaptive technologies designed specifically for legacy systems or using intermediary devices such as converters or adapters that bridge differences in technology standards.


Moreover, careful attention must be paid to compliance with electrical codes and regulations during integration to ensure safety and reliability. It's crucial that any changes made do not violate these standards as they are instrumental in preventing hazards like short circuits or overloads.


The human element also plays an essential role in this process; skilled technicians bring invaluable expertise in troubleshooting unforeseen issues that may arise during installation. Their experience allows them to anticipate potential problems before they occur, facilitating smoother transitions from old systems to new ones.


In conclusion, integrating new controls with existing wiring is more than just a technical challenge-it is an art form requiring precision, knowledge, and adaptability. Successful integration hinges on assessing current capabilities accurately while selecting appropriate solutions that embrace both innovation and tradition without sacrificing performance or safety. By doing so, one can ensure seamless compatibility between past infrastructures and future possibilities-a testament to engineering prowess meeting evolving needs head-on.

Best Practices for Ensuring Structural Integrity During Installation and Maintenance

When discussing the topic of matching compatibility between controls and existing wiring, case studies or examples of successful implementations provide invaluable insights. These real-world scenarios not only illustrate practical applications but also highlight the challenges and solutions encountered in ensuring seamless integration.


One notable example can be found in the retrofitting of a historical building with modern HVAC systems. The challenge here was to integrate state-of-the-art digital controls without compromising the integrity of the building's intricate electrical wiring. This project required an innovative approach to compatibility matching. Engineers began by conducting a thorough assessment of the existing wiring infrastructure, identifying potential limitations and areas that required reinforcement.


To ensure successful integration, they employed adaptive control units specifically designed for legacy systems. These units acted as intermediaries, translating signals between the new digital thermostats and the older wiring system. By doing so, they maintained optimal performance without necessitating extensive rewiring, thereby preserving both time and resources.


Another compelling case study involves a manufacturing plant seeking to upgrade its assembly line with automated controls. The existing wiring network posed significant compatibility challenges due to its age and complexity. To address this, technicians implemented a phased approach. Initially, they installed hybrid controllers capable of interfacing with both analog and digital signals. This allowed for gradual integration, where new sections could be upgraded while maintaining full functionality of existing operations.


The success of this project hinged on meticulous planning and testing phases that ensured each step harmonized with the current infrastructure. Moreover, collaboration among engineers, electricians, and software developers was crucial in overcoming technical hurdles related to signal interference and data transmission rates.


These examples underscore several key factors essential for successful compatibility matching: comprehensive analysis of existing systems, customized solutions tailored to specific requirements, strategic implementation plans that minimize disruption, and interdisciplinary teamwork that fosters innovation.


In conclusion, case studies like these demonstrate that while compatibility matching presents its set of challenges, it is entirely feasible given thoughtful planning and execution. Through adaptive technologies and collaborative efforts, even complex projects involving outdated wiring can achieve seamless integration with modern control systems-ultimately enhancing efficiency without sacrificing reliability or historical value.

A thermal image of human

Thermal comfort is the condition of mind that expresses subjective satisfaction with the thermal environment.[1] The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort.[2] Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC (heating, ventilation, and air conditioning) design engineers.

Thermal neutrality is maintained when the heat generated by human metabolism is allowed to dissipate, thus maintaining thermal equilibrium with the surroundings. The main factors that influence thermal neutrality are those that determine heat gain and loss, namely metabolic rate, clothing insulation, air temperature, mean radiant temperature, air speed and relative humidity. Psychological parameters, such as individual expectations, and physiological parameters also affect thermal neutrality.[3] Neutral temperature is the temperature that can lead to thermal neutrality and it may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity. People are highly sensitive to even small differences in environmental temperature. At 24 °C, a difference of 0.38 °C can be detected between the temperature of two rooms.[4]

The Predicted Mean Vote (PMV) model stands among the most recognized thermal comfort models. It was developed using principles of heat balance and experimental data collected in a controlled climate chamber under steady state conditions.[5] The adaptive model, on the other hand, was developed based on hundreds of field studies with the idea that occupants dynamically interact with their environment. Occupants control their thermal environment by means of clothing, operable windows, fans, personal heaters, and sun shades.[3][6] The PMV model can be applied to air-conditioned buildings, while the adaptive model can be applied only to buildings where no mechanical systems have been installed.[1] There is no consensus about which comfort model should be applied for buildings that are partially air-conditioned spatially or temporally.

Thermal comfort calculations in accordance with the ANSI/ASHRAE Standard 55,[1] the ISO 7730 Standard[7] and the EN 16798-1 Standard[8] can be freely performed with either the CBE Thermal Comfort Tool for ASHRAE 55,[9] with the Python package pythermalcomfort[10] or with the R package comf.

Significance

[edit]

Satisfaction with the thermal environment is important because thermal conditions are potentially life-threatening for humans if the core body temperature reaches conditions of hyperthermia, above 37.5–38.3 °C (99.5–100.9 °F),[11][12] or hypothermia, below 35.0 °C (95.0 °F).[13] Buildings modify the conditions of the external environment and reduce the effort that the human body needs to do in order to stay stable at a normal human body temperature, important for the correct functioning of human physiological processes.

The Roman writer Vitruvius actually linked this purpose to the birth of architecture.[14] David Linden also suggests that the reason why we associate tropical beaches with paradise is because in those environments is where human bodies need to do less metabolic effort to maintain their core temperature.[15] Temperature not only supports human life; coolness and warmth have also become in different cultures a symbol of protection, community and even the sacred.[16]

In building science studies, thermal comfort has been related to productivity and health. Office workers who are satisfied with their thermal environment are more productive.[17][18] The combination of high temperature and high relative humidity reduces thermal comfort and indoor air quality.[19]

Although a single static temperature can be comfortable, people are attracted by thermal changes, such as campfires and cool pools. Thermal pleasure is caused by varying thermal sensations from a state of unpleasantness to a state of pleasantness, and the scientific term for it is positive thermal alliesthesia.[20] From a state of thermal neutrality or comfort any change will be perceived as unpleasant.[21] This challenges the assumption that mechanically controlled buildings should deliver uniform temperatures and comfort, if it is at the cost of excluding thermal pleasure.[22]

Influencing factors

[edit]

Since there are large variations from person to person in terms of physiological and psychological satisfaction, it is hard to find an optimal temperature for everyone in a given space. Laboratory and field data have been collected to define conditions that will be found comfortable for a specified percentage of occupants.[1]

There are numerous factors that directly affect thermal comfort that can be grouped in two categories:

  1. Personal factors – characteristics of the occupants such as metabolic rate and clothing level
  2. Environmental factors – which are conditions of the thermal environment, specifically air temperature, mean radiant temperature, air speed and humidity

Even if all these factors may vary with time, standards usually refer to a steady state to study thermal comfort, just allowing limited temperature variations.

Personal factors

[edit]

Metabolic rate

[edit]

People have different metabolic rates that can fluctuate due to activity level and environmental conditions.[23][24][25] ASHRAE 55-2017 defines metabolic rate as the rate of transformation of chemical energy into heat and mechanical work by metabolic activities of an individual, per unit of skin surface area.[1]: 3 

Metabolic rate is expressed in units of met, equal to 58.2 W/m² (18.4 Btu/h·ft²). One met is equal to the energy produced per unit surface area of an average person seated at rest.

ASHRAE 55 provides a table of metabolic rates for a variety of activities. Some common values are 0.7 met for sleeping, 1.0 met for a seated and quiet position, 1.2–1.4 met for light activities standing, 2.0 met or more for activities that involve movement, walking, lifting heavy loads or operating machinery. For intermittent activity, the standard states that it is permissible to use a time-weighted average metabolic rate if individuals are performing activities that vary over a period of one hour or less. For longer periods, different metabolic rates must be considered.[1]

According to ASHRAE Handbook of Fundamentals, estimating metabolic rates is complex, and for levels above 2 or 3 met – especially if there are various ways of performing such activities – the accuracy is low. Therefore, the standard is not applicable for activities with an average level higher than 2 met. Met values can also be determined more accurately than the tabulated ones, using an empirical equation that takes into account the rate of respiratory oxygen consumption and carbon dioxide production. Another physiological yet less accurate method is related to the heart rate, since there is a relationship between the latter and oxygen consumption.[26]

The Compendium of Physical Activities is used by physicians to record physical activities. It has a different definition of met that is the ratio of the metabolic rate of the activity in question to a resting metabolic rate.[27] As the formulation of the concept is different from the one that ASHRAE uses, these met values cannot be used directly in PMV calculations, but it opens up a new way of quantifying physical activities.

Food and drink habits may have an influence on metabolic rates, which indirectly influences thermal preferences. These effects may change depending on food and drink intake.[28]

Body shape is another factor that affects metabolic rate and hence thermal comfort. Heat dissipation depends on body surface area. The surface area of an average person is 1.8 m2 (19 ft2).[1] A tall and skinny person has a larger surface-to-volume ratio, can dissipate heat more easily, and can tolerate higher temperatures more than a person with a rounded body shape.[28]

Clothing insulation

[edit]

The amount of thermal insulation worn by a person has a substantial impact on thermal comfort, because it influences the heat loss and consequently the thermal balance. Layers of insulating clothing prevent heat loss and can either help keep a person warm or lead to overheating. Generally, the thicker the garment is, the greater insulating ability it has. Depending on the type of material the clothing is made out of, air movement and relative humidity can decrease the insulating ability of the material.[29][30]

1 clo is equal to 0.155 m2·K/W (0.88 °F·ft2·h/Btu). This corresponds to trousers, a long sleeved shirt, and a jacket. Clothing insulation values for other common ensembles or single garments can be found in ASHRAE 55.[1]

Skin wetness
[edit]

Skin wetness is defined as "the proportion of the total skin surface area of the body covered with sweat".[31] The wetness of skin in different areas also affects perceived thermal comfort. Humidity can increase wetness in different areas of the body, leading to a perception of discomfort. This is usually localized in different parts of the body, and local thermal comfort limits for skin wetness differ by locations of the body.[32] The extremities are much more sensitive to thermal discomfort from wetness than the trunk of the body. Although local thermal discomfort can be caused by wetness, the thermal comfort of the whole body will not be affected by the wetness of certain parts.

Environmental factors

[edit]

Air temperature

[edit]

The air temperature is the average temperature of the air surrounding the occupant, with respect to location and time. According to ASHRAE 55 standard, the spatial average takes into account the ankle, waist and head levels, which vary for seated or standing occupants. The temporal average is based on three-minutes intervals with at least 18 equally spaced points in time. Air temperature is measured with a dry-bulb thermometer and for this reason it is also known as dry-bulb temperature.

Mean radiant temperature

[edit]

The radiant temperature is related to the amount of radiant heat transferred from a surface, and it depends on the material's ability to absorb or emit heat, or its emissivity. The mean radiant temperature depends on the temperatures and emissivities of the surrounding surfaces as well as the view factor, or the amount of the surface that is “seen” by the object. So the mean radiant temperature experienced by a person in a room with the sunlight streaming in varies based on how much of their body is in the sun.

Air speed

[edit]

Air speed is defined as the rate of air movement at a point, without regard to direction. According to ANSI/ASHRAE Standard 55, it is the average speed of the air surrounding a representative occupant, with respect to location and time. The spatial average is for three heights as defined for average air temperature. For an occupant moving in a space the sensors shall follow the movements of the occupant. The air speed is averaged over an interval not less than one and not greater than three minutes. Variations that occur over a period greater than three minutes shall be treated as multiple different air speeds.[33]

Relative humidity

[edit]

Relative humidity (RH) is the ratio of the amount of water vapor in the air to the amount of water vapor that the air could hold at the specific temperature and pressure. While the human body has thermoreceptors in the skin that enable perception of temperature, relative humidity is detected indirectly. Sweating is an effective heat loss mechanism that relies on evaporation from the skin. However at high RH, the air has close to the maximum water vapor that it can hold, so evaporation, and therefore heat loss, is decreased. On the other hand, very dry environments (RH < 20–30%) are also uncomfortable because of their effect on the mucous membranes. The recommended level of indoor humidity is in the range of 30–60% in air conditioned buildings,[34][35] but new standards such as the adaptive model allow lower and higher humidity, depending on the other factors involved in thermal comfort.

Recently, the effects of low relative humidity and high air velocity were tested on humans after bathing. Researchers found that low relative humidity engendered thermal discomfort as well as the sensation of dryness and itching. It is recommended to keep relative humidity levels higher in a bathroom than other rooms in the house for optimal conditions.[36]

Various types of apparent temperature have been developed to combine air temperature and air humidity. For higher temperatures, there are quantitative scales, such as the heat index. For lower temperatures, a related interplay was identified only qualitatively:

  • High humidity and low temperatures cause the air to feel chilly.[37]
  • Cold air with high relative humidity "feels" colder than dry air of the same temperature because high humidity in cold weather increases the conduction of heat from the body.[38]

There has been controversy over why damp cold air feels colder than dry cold air. Some believe it is because when the humidity is high, our skin and clothing become moist and are better conductors of heat, so there is more cooling by conduction.[39]

The influence of humidity can be exacerbated with the combined use of fans (forced convection cooling).[40]

Natural ventilation

[edit]

Many buildings use an HVAC unit to control their thermal environment. Other buildings are naturally ventilated (or would have cross ventilation) and do not rely on mechanical systems to provide thermal comfort. Depending on the climate, this can drastically reduce energy consumption. It is sometimes seen as a risk, though, since indoor temperatures can be too extreme if the building is poorly designed. Properly designed, naturally ventilated buildings keep indoor conditions within the range where opening windows and using fans in the summer, and wearing extra clothing in the winter, can keep people thermally comfortable.[41]

Models and indices

[edit]

There are several different models or indices that can be used to assess thermal comfort conditions indoors as described below.

PMV/PPD method

[edit]
Psychrometric Chart
Temperature-relative humidity chart
Two alternative representations of thermal comfort for the PMV/PPD method

The PMV/PPD model was developed by P.O. Fanger using heat-balance equations and empirical studies about skin temperature to define comfort. Standard thermal comfort surveys ask subjects about their thermal sensation on a seven-point scale from cold (−3) to hot (+3). Fanger's equations are used to calculate the predicted mean vote (PMV) of a group of subjects for a particular combination of air temperature, mean radiant temperature, relative humidity, air speed, metabolic rate, and clothing insulation.[5] PMV equal to zero is representing thermal neutrality, and the comfort zone is defined by the combinations of the six parameters for which the PMV is within the recommended limits (−0.5 < PMV < +0.5).[1] Although predicting the thermal sensation of a population is an important step in determining what conditions are comfortable, it is more useful to consider whether or not people will be satisfied. Fanger developed another equation to relate the PMV to the Predicted Percentage of Dissatisfied (PPD). This relation was based on studies that surveyed subjects in a chamber where the indoor conditions could be precisely controlled.[5]

The PMV/PPD model is applied globally but does not directly take into account the adaptation mechanisms and outdoor thermal conditions.[3][42][43]

ASHRAE Standard 55-2017 uses the PMV model to set the requirements for indoor thermal conditions. It requires that at least 80% of the occupants be satisfied.[1]

The CBE Thermal Comfort Tool for ASHRAE 55[9] allows users to input the six comfort parameters to determine whether a certain combination complies with ASHRAE 55. The results are displayed on a psychrometric or a temperature-relative humidity chart and indicate the ranges of temperature and relative humidity that will be comfortable with the given the values input for the remaining four parameters.[44]

The PMV/PPD model has a low prediction accuracy.[45] Using the world largest thermal comfort field survey database,[46] the accuracy of PMV in predicting occupant's thermal sensation was only 34%, meaning that the thermal sensation is correctly predicted one out of three times. The PPD was overestimating subject's thermal unacceptability outside the thermal neutrality ranges (-1≤PMV≤1). The PMV/PPD accuracy varies strongly between ventilation strategies, building types and climates.[45]

Elevated air speed method

[edit]

ASHRAE 55 2013 accounts for air speeds above 0.2 metres per second (0.66 ft/s) separately than the baseline model. Because air movement can provide direct cooling to people, particularly if they are not wearing much clothing, higher temperatures can be more comfortable than the PMV model predicts. Air speeds up to 0.8 m/s (2.6 ft/s) are allowed without local control, and 1.2 m/s is possible with local control. This elevated air movement increases the maximum temperature for an office space in the summer to 30 °C from 27.5 °C (86.0–81.5 °F).[1]

Virtual Energy for Thermal Comfort

[edit]

"Virtual Energy for Thermal Comfort" is the amount of energy that will be required to make a non-air-conditioned building relatively as comfortable as one with air-conditioning. This is based on the assumption that the home will eventually install air-conditioning or heating.[47] Passive design improves thermal comfort in a building, thus reducing demand for heating or cooling. In many developing countries, however, most occupants do not currently heat or cool, due to economic constraints, as well as climate conditions which border lines comfort conditions such as cold winter nights in Johannesburg (South Africa) or warm summer days in San Jose, Costa Rica. At the same time, as incomes rise, there is a strong tendency to introduce cooling and heating systems. If we recognize and reward passive design features that improve thermal comfort today, we diminish the risk of having to install HVAC systems in the future, or we at least ensure that such systems will be smaller and less frequently used. Or in case the heating or cooling system is not installed due to high cost, at least people should not suffer from discomfort indoors. To provide an example, in San Jose, Costa Rica, if a house were being designed with high level of glazing and small opening sizes, the internal temperature would easily rise above 30 °C (86 °F) and natural ventilation would not be enough to remove the internal heat gains and solar gains. This is why Virtual Energy for Comfort is important.

World Bank's assessment tool the EDGE software (Excellence in Design for Greater Efficiencies) illustrates the potential issues with discomfort in buildings and has created the concept of Virtual Energy for Comfort which provides for a way to present potential thermal discomfort. This approach is used to award for design solutions which improves thermal comfort even in a fully free running building. Despite the inclusion of requirements for overheating in CIBSE, overcooling has not been assessed. However, overcooling can be an issue, mainly in the developing world, for example in cities such as Lima (Peru), Bogota, and Delhi, where cooler indoor temperatures can occur frequently. This may be a new area for research and design guidance for reduction of discomfort.

Cooling Effect

[edit]

ASHRAE 55-2017 defines the Cooling Effect (CE) at elevated air speed (above 0.2 metres per second (0.66 ft/s)) as the value that, when subtracted from both the air temperature and the mean radiant temperature, yields the same SET value under still air (0.1 m/s) as in the first SET calculation under elevated air speed.[1]

The CE can be used to determine the PMV adjusted for an environment with elevated air speed using the adjusted temperature, the adjusted radiant temperature and still air (0.2 metres per second (0.66 ft/s)). Where the adjusted temperatures are equal to the original air and mean radiant temperatures minus the CE.

Local thermal discomfort

[edit]

Avoiding local thermal discomfort, whether caused by a vertical air temperature difference between the feet and the head, by an asymmetric radiant field, by local convective cooling (draft), or by contact with a hot or cold floor, is essential to providing acceptable thermal comfort. People are generally more sensitive to local discomfort when their thermal sensation is cooler than neutral, while they are less sensitive to it when their body is warmer than neutral.[33]

Radiant temperature asymmetry

[edit]

Large differences in the thermal radiation of the surfaces surrounding a person may cause local discomfort or reduce acceptance of the thermal conditions. ASHRAE Standard 55 sets limits on the allowable temperature differences between various surfaces. Because people are more sensitive to some asymmetries than others, for example that of a warm ceiling versus that of hot and cold vertical surfaces, the limits depend on which surfaces are involved. The ceiling is not allowed to be more than +5 °C (9.0 °F) warmer, whereas a wall may be up to +23 °C (41 °F) warmer than the other surfaces.[1]

Draft

[edit]

While air movement can be pleasant and provide comfort in some circumstances, it is sometimes unwanted and causes discomfort. This unwanted air movement is called "draft" and is most prevalent when the thermal sensation of the whole body is cool. People are most likely to feel a draft on uncovered body parts such as their head, neck, shoulders, ankles, feet, and legs, but the sensation also depends on the air speed, air temperature, activity, and clothing.[1]

Floor surface temperature

[edit]

Floors that are too warm or too cool may cause discomfort, depending on footwear. ASHRAE 55 recommends that floor temperatures stay in the range of 19–29 °C (66–84 °F) in spaces where occupants will be wearing lightweight shoes.[1]

Standard effective temperature

[edit]

Standard effective temperature (SET) is a model of human response to the thermal environment. Developed by A.P. Gagge and accepted by ASHRAE in 1986,[48] it is also referred to as the Pierce Two-Node model.[49] Its calculation is similar to PMV because it is a comprehensive comfort index based on heat-balance equations that incorporates the personal factors of clothing and metabolic rate. Its fundamental difference is it takes a two-node method to represent human physiology in measuring skin temperature and skin wettedness.[48]

The SET index is defined as the equivalent dry bulb temperature of an isothermal environment at 50% relative humidity in which a subject, while wearing clothing standardized for activity concerned, would have the same heat stress (skin temperature) and thermoregulatory strain (skin wettedness) as in the actual test environment.[48]

Research has tested the model against experimental data and found it tends to overestimate skin temperature and underestimate skin wettedness.[49][50] Fountain and Huizenga (1997) developed a thermal sensation prediction tool that computes SET.[51] The SET index can also be calculated using either the CBE Thermal Comfort Tool for ASHRAE 55,[9] the Python package pythermalcomfort,[10] or the R package comf.

Adaptive comfort model

[edit]
Adaptive chart according to ASHRAE Standard 55-2010

The adaptive model is based on the idea that outdoor climate might be used as a proxy of indoor comfort because of a statistically significant correlation between them. The adaptive hypothesis predicts that contextual factors, such as having access to environmental controls, and past thermal history can influence building occupants' thermal expectations and preferences.[3] Numerous researchers have conducted field studies worldwide in which they survey building occupants about their thermal comfort while taking simultaneous environmental measurements. Analyzing a database of results from 160 of these buildings revealed that occupants of naturally ventilated buildings accept and even prefer a wider range of temperatures than their counterparts in sealed, air-conditioned buildings because their preferred temperature depends on outdoor conditions.[3] These results were incorporated in the ASHRAE 55-2004 standard as the adaptive comfort model. The adaptive chart relates indoor comfort temperature to prevailing outdoor temperature and defines zones of 80% and 90% satisfaction.[1]

The ASHRAE-55 2010 Standard introduced the prevailing mean outdoor temperature as the input variable for the adaptive model. It is based on the arithmetic average of the mean daily outdoor temperatures over no fewer than 7 and no more than 30 sequential days prior to the day in question.[1] It can also be calculated by weighting the temperatures with different coefficients, assigning increasing importance to the most recent temperatures. In case this weighting is used, there is no need to respect the upper limit for the subsequent days. In order to apply the adaptive model, there should be no mechanical cooling system for the space, occupants should be engaged in sedentary activities with metabolic rates of 1–1.3 met, and a prevailing mean temperature of 10–33.5 °C (50.0–92.3 °F).[1]

This model applies especially to occupant-controlled, natural-conditioned spaces, where the outdoor climate can actually affect the indoor conditions and so the comfort zone. In fact, studies by de Dear and Brager showed that occupants in naturally ventilated buildings were tolerant of a wider range of temperatures.[3] This is due to both behavioral and physiological adjustments, since there are different types of adaptive processes.[52] ASHRAE Standard 55-2010 states that differences in recent thermal experiences, changes in clothing, availability of control options, and shifts in occupant expectations can change people's thermal responses.[1]

Adaptive models of thermal comfort are implemented in other standards, such as European EN 15251 and ISO 7730 standard. While the exact derivation methods and results are slightly different from the ASHRAE 55 adaptive standard, they are substantially the same. A larger difference is in applicability. The ASHRAE adaptive standard only applies to buildings without mechanical cooling installed, while EN15251 can be applied to mixed-mode buildings, provided the system is not running.[53]

There are basically three categories of thermal adaptation, namely: behavioral, physiological, and psychological.

Psychological adaptation

[edit]

An individual's comfort level in a given environment may change and adapt over time due to psychological factors. Subjective perception of thermal comfort may be influenced by the memory of previous experiences. Habituation takes place when repeated exposure moderates future expectations, and responses to sensory input. This is an important factor in explaining the difference between field observations and PMV predictions (based on the static model) in naturally ventilated buildings. In these buildings, the relationship with the outdoor temperatures has been twice as strong as predicted.[3]

Psychological adaptation is subtly different in the static and adaptive models. Laboratory tests of the static model can identify and quantify non-heat transfer (psychological) factors that affect reported comfort. The adaptive model is limited to reporting differences (called psychological) between modeled and reported comfort.[citation needed]

Thermal comfort as a "condition of mind" is defined in psychological terms. Among the factors that affect the condition of mind (in the laboratory) are a sense of control over the temperature, knowledge of the temperature and the appearance of the (test) environment. A thermal test chamber that appeared residential "felt" warmer than one which looked like the inside of a refrigerator.[54]

Physiological adaptation

[edit]

The body has several thermal adjustment mechanisms to survive in drastic temperature environments. In a cold environment the body utilizes vasoconstriction; which reduces blood flow to the skin, skin temperature and heat dissipation. In a warm environment, vasodilation will increase blood flow to the skin, heat transport, and skin temperature and heat dissipation.[55] If there is an imbalance despite the vasomotor adjustments listed above, in a warm environment sweat production will start and provide evaporative cooling. If this is insufficient, hyperthermia will set in, body temperature may reach 40 °C (104 °F), and heat stroke may occur. In a cold environment, shivering will start, involuntarily forcing the muscles to work and increasing the heat production by up to a factor of 10. If equilibrium is not restored, hypothermia can set in, which can be fatal.[55] Long-term adjustments to extreme temperatures, of a few days to six months, may result in cardiovascular and endocrine adjustments. A hot climate may create increased blood volume, improving the effectiveness of vasodilation, enhanced performance of the sweat mechanism, and the readjustment of thermal preferences. In cold or underheated conditions, vasoconstriction can become permanent, resulting in decreased blood volume and increased body metabolic rate.[55]

Behavioral adaptation

[edit]

In naturally ventilated buildings, occupants take numerous actions to keep themselves comfortable when the indoor conditions drift towards discomfort. Operating windows and fans, adjusting blinds/shades, changing clothing, and consuming food and drinks are some of the common adaptive strategies. Among these, adjusting windows is the most common.[56] Those occupants who take these sorts of actions tend to feel cooler at warmer temperatures than those who do not.[57]

The behavioral actions significantly influence energy simulation inputs, and researchers are developing behavior models to improve the accuracy of simulation results. For example, there are many window-opening models that have been developed to date, but there is no consensus over the factors that trigger window opening.[56]

People might adapt to seasonal heat by becoming more nocturnal, doing physical activity and even conducting business at night.

Specificity and sensitivity

[edit]

Individual differences

[edit]

The thermal sensitivity of an individual is quantified by the descriptor FS, which takes on higher values for individuals with lower tolerance to non-ideal thermal conditions.[58] This group includes pregnant women, the disabled, as well as individuals whose age is below fourteen or above sixty, which is considered the adult range. Existing literature provides consistent evidence that sensitivity to hot and cold surfaces usually declines with age. There is also some evidence of a gradual reduction in the effectiveness of the body in thermo-regulation after the age of sixty.[58] This is mainly due to a more sluggish response of the counteraction mechanisms in lower parts of the body that are used to maintain the core temperature of the body at ideal values.[58] Seniors prefer warmer temperatures than young adults (76 vs 72 degrees F or 24.4 vs 22.2 Celsius).[54]

Situational factors include the health, psychological, sociological, and vocational activities of the persons.

Biological sex differences

[edit]

While thermal comfort preferences between sexes seem to be small, there are some average differences. Studies have found males on average report discomfort due to rises in temperature much earlier than females. Males on average also estimate higher levels of their sensation of discomfort than females. One recent study tested males and females in the same cotton clothing, performing mental jobs while using a dial vote to report their thermal comfort to the changing temperature.[59] Many times, females preferred higher temperatures than males. But while females tend to be more sensitive to temperatures, males tend to be more sensitive to relative-humidity levels.[60][61]

An extensive field study was carried out in naturally ventilated residential buildings in Kota Kinabalu, Sabah, Malaysia. This investigation explored the sexes thermal sensitivity to the indoor environment in non-air-conditioned residential buildings. Multiple hierarchical regression for categorical moderator was selected for data analysis; the result showed that as a group females were slightly more sensitive than males to the indoor air temperatures, whereas, under thermal neutrality, it was found that males and females have similar thermal sensation.[62]

Regional differences

[edit]

In different areas of the world, thermal comfort needs may vary based on climate. In China[where?] the climate has hot humid summers and cold winters, causing a need for efficient thermal comfort. Energy conservation in relation to thermal comfort has become a large issue in China in the last several decades due to rapid economic and population growth.[63] Researchers are now looking into ways to heat and cool buildings in China for lower costs and also with less harm to the environment.

In tropical areas of Brazil, urbanization is creating urban heat islands (UHI). These are urban areas that have risen over the thermal comfort limits due to a large influx of people and only drop within the comfortable range during the rainy season.[64] Urban heat islands can occur over any urban city or built-up area with the correct conditions.[65][66]

In the hot, humid region of Saudi Arabia, the issue of thermal comfort has been important in mosques, because they are very large open buildings that are used only intermittently (very busy for the noon prayer on Fridays) it is hard to ventilate them properly. The large size requires a large amount of ventilation, which requires a lot of energy since the buildings are used only for short periods of time. Temperature regulation in mosques is a challenge due to the intermittent demand, leading to many mosques being either too hot or too cold. The stack effect also comes into play due to their large size and creates a large layer of hot air above the people in the mosque. New designs have placed the ventilation systems lower in the buildings to provide more temperature control at ground level.[67] New monitoring steps are also being taken to improve efficiency.[68]

Thermal stress

[edit]

The concept of thermal comfort is closely related to thermal stress. This attempts to predict the impact of solar radiation, air movement, and humidity for military personnel undergoing training exercises or athletes during competitive events. Several thermal stress indices have been proposed, such as the Predicted Heat Strain (PHS) or the humidex.[69] Generally, humans do not perform well under thermal stress. People's performances under thermal stress is about 11% lower than their performance at normal thermal wet conditions. Also, human performance in relation to thermal stress varies greatly by the type of task which the individual is completing. Some of the physiological effects of thermal heat stress include increased blood flow to the skin, sweating, and increased ventilation.[70][71]

Predicted Heat Strain (PHS)

[edit]

The PHS model, developed by the International Organization for Standardization (ISO) committee, allows the analytical evaluation of the thermal stress experienced by a working subject in a hot environment.[72] It describes a method for predicting the sweat rate and the internal core temperature that the human body will develop in response to the working conditions. The PHS is calculated as a function of several physical parameters, consequently it makes it possible to determine which parameter or group of parameters should be modified, and to what extent, in order to reduce the risk of physiological strains. The PHS model does not predict the physiological response of an individual subject, but only considers standard subjects in good health and fit for the work they perform. The PHS can be determined using either the Python package pythermalcomfort[10] or the R package comf.

American Conference on Governmental Industrial Hygienists (ACGIH) Action Limits and Threshold Limit Values

[edit]

ACGIH has established Action Limits and Threshold Limit Values for heat stress based upon the estimated metabolic rate of a worker and the environmental conditions the worker is subjected to.

This methodology has been adopted by the Occupational Safety and Health Administration (OSHA) as an effective method of assesing heat stress within workplaces.[73]

Research

[edit]

The factors affecting thermal comfort were explored experimentally in the 1970s. Many of these studies led to the development and refinement of ASHRAE Standard 55 and were performed at Kansas State University by Ole Fanger and others. Perceived comfort was found to be a complex interaction of these variables. It was found that the majority of individuals would be satisfied by an ideal set of values. As the range of values deviated progressively from the ideal, fewer and fewer people were satisfied. This observation could be expressed statistically as the percent of individuals who expressed satisfaction by comfort conditions and the predicted mean vote (PMV). This approach was challenged by the adaptive comfort model, developed from the ASHRAE 884 project, which revealed that occupants were comfortable in a broader range of temperatures.[3]

This research is applied to create Building Energy Simulation (BES) programs for residential buildings. Residential buildings in particular can vary much more in thermal comfort than public and commercial buildings. This is due to their smaller size, the variations in clothing worn, and different uses of each room. The main rooms of concern are bathrooms and bedrooms. Bathrooms need to be at a temperature comfortable for a human with or without clothing. Bedrooms are of importance because they need to accommodate different levels of clothing and also different metabolic rates of people asleep or awake.[74] Discomfort hours is a common metric used to evaluate the thermal performance of a space.

Thermal comfort research in clothing is currently being done by the military. New air-ventilated garments are being researched to improve evaporative cooling in military settings. Some models are being created and tested based on the amount of cooling they provide.[75]

In the last twenty years, researchers have also developed advanced thermal comfort models that divide the human body into many segments, and predict local thermal discomfort by considering heat balance.[76][77][78] This has opened up a new arena of thermal comfort modeling that aims at heating/cooling selected body parts.

Another area of study is the hue-heat hypothesis that states that an environment with warm colors (red, orange yellow hues) will feel warmer in terms of temperature and comfort, while an environment with cold colors (blue, green hues) will feel cooler.[79][80][81] The hue-heat hypothesis has both been investigated scientifically[82] and ingrained in popular culture in the terms warm and cold colors [83]

Medical environments

[edit]

Whenever the studies referenced tried to discuss the thermal conditions for different groups of occupants in one room, the studies ended up simply presenting comparisons of thermal comfort satisfaction based on the subjective studies. No study tried to reconcile the different thermal comfort requirements of different types of occupants who compulsorily must stay in one room. Therefore, it looks to be necessary to investigate the different thermal conditions required by different groups of occupants in hospitals to reconcile their different requirements in this concept. To reconcile the differences in the required thermal comfort conditions it is recommended to test the possibility of using different ranges of local radiant temperature in one room via a suitable mechanical system.

Although different researches are undertaken on thermal comfort for patients in hospitals, it is also necessary to study the effects of thermal comfort conditions on the quality and the quantity of healing for patients in hospitals. There are also original researches that show the link between thermal comfort for staff and their levels of productivity, but no studies have been produced individually in hospitals in this field. Therefore, research for coverage and methods individually for this subject is recommended. Also research in terms of cooling and heating delivery systems for patients with low levels of immune-system protection (such as HIV patients, burned patients, etc.) are recommended. There are important areas, which still need to be focused on including thermal comfort for staff and its relation with their productivity, using different heating systems to prevent hypothermia in the patient and to improve the thermal comfort for hospital staff simultaneously.

Finally, the interaction between people, systems and architectural design in hospitals is a field in which require further work needed to improve the knowledge of how to design buildings and systems to reconcile many conflicting factors for the people occupying these buildings.[84]

Personal comfort systems

[edit]

Personal comfort systems (PCS) refer to devices or systems which heat or cool a building occupant personally.[85] This concept is best appreciated in contrast to central HVAC systems which have uniform temperature settings for extensive areas. Personal comfort systems include fans and air diffusers of various kinds (e.g. desk fans, nozzles and slot diffusers, overhead fans, high-volume low-speed fans etc.) and personalized sources of radiant or conductive heat (footwarmers, legwarmers, hot water bottles etc.). PCS has the potential to satisfy individual comfort requirements much better than current HVAC systems, as interpersonal differences in thermal sensation due to age, sex, body mass, metabolic rate, clothing and thermal adaptation can amount to an equivalent temperature variation of 2–5 °C (3,6–9 °F), which is impossible for a central, uniform HVAC system to cater to.[85] Besides, research has shown that the perceived ability to control one's thermal environment tends to widen one's range of tolerable temperatures.[3] Traditionally, PCS devices have been used in isolation from one another. However, it has been proposed by Andersen et al. (2016) that a network of PCS devices which generate well-connected microzones of thermal comfort, and report real-time occupant information and respond to programmatic actuation requests (e.g. a party, a conference, a concert etc.) can combine with occupant-aware building applications to enable new methods of comfort maximization.[86]

See also

[edit]
  • ASHRAE
  • ANSI/ASHRAE Standard 55
  • Air conditioning
  • Building insulation
  • Cold and heat adaptations in humans
  • Heat stress
  • Mean radiant temperature
  • Mahoney tables
  • Povl Ole Fanger
  • Psychrometrics
  • Ralph G. Nevins
  • Room air distribution
  • Room temperature
  • Ventilative cooling

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s ANSI/ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy
  2. ^ Çengel, Yunus A.; Boles, Michael A. (2015). Thermodynamics: An Engineering Approach (8th ed.). New York, NY: McGraw-Hill Education. ISBN 978-0-07-339817-4.
  3. ^ a b c d e f g h i de Dear, Richard; Brager, Gail (1998). "Developing an adaptive model of thermal comfort and preference". ASHRAE Transactions. 104 (1): 145–67.
  4. ^ Battistel, Laura; Vilardi, Andrea; Zampini, Massimiliano; Parin, Riccardo (2023). "An investigation on humans' sensitivity to environmental temperature". Scientific Reports. 13 (1). doi:10.1038/s41598-023-47880-5. ISSN 2045-2322. PMC 10695924. PMID 38049468.
  5. ^ a b c Fanger, P Ole (1970). Thermal Comfort: Analysis and applications in environmental engineering. Danish Technical Press. ISBN 8757103410.[page needed]
  6. ^ Nicol, Fergus; Humphreys, Michael (2002). "Adaptive thermal comfort and sustainable thermal standards for buildings" (PDF). Energy and Buildings. 34 (6): 563–572. doi:10.1016/S0378-7788(02)00006-3. S2CID 17571584.[permanent dead link]
  7. ^ ISO, 2005. ISO 7730 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
  8. ^ CEN, 2019. EN 16798-1 - Energy performance of buildings - Ventilation for buildings. Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
  9. ^ a b c Tartarini, Federico; Schiavon, Stefano; Cheung, Toby; Hoyt, Tyler (2020). "CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations". SoftwareX. 12: 100563. Bibcode:2020SoftX..1200563T. doi:10.1016/j.softx.2020.100563. S2CID 225631918.
  10. ^ a b c Tartarini, Federico; Schiavon, Stefano (2020-07-01). "pythermalcomfort: A Python package for thermal comfort research". SoftwareX. 12: 100578. Bibcode:2020SoftX..1200578T. doi:10.1016/j.softx.2020.100578. ISSN 2352-7110. S2CID 225618628.
  11. ^ Axelrod, Yekaterina K.; Diringer, Michael N. (2008). "Temperature Management in Acute Neurologic Disorders". Neurologic Clinics. 26 (2): 585–603. doi:10.1016/j.ncl.2008.02.005. ISSN 0733-8619. PMID 18514828.
  12. ^ Laupland, Kevin B. (2009). "Fever in the critically ill medical patient". Critical Care Medicine. 37 (Supplement): S273–S278. doi:10.1097/ccm.0b013e3181aa6117. ISSN 0090-3493. PMID 19535958. S2CID 21002774.
  13. ^ Brown, Douglas J.A.; Brugger, Hermann; Boyd, Jeff; Paal, Peter (2012-11-15). "Accidental Hypothermia". New England Journal of Medicine. 367 (20): 1930–1938. doi:10.1056/nejmra1114208. ISSN 0028-4793. PMID 23150960. S2CID 205116341.
  14. ^ Vitruvius, Marcus (2001). The Ten Books of Architecture. Cambridge University Press. ISBN 978-1-107-71733-6.
  15. ^ Linden, David J. (1961). Touch: the science of hand, heart, and mind. New York. ISBN 9780670014873. OCLC 881888093.cite book: CS1 maint: location missing publisher (link)
  16. ^ Lisa., Heschong (1979). Thermal delight in architecture. Cambridge, Mass.: MIT Press. ISBN 978-0262081016. OCLC 5353303.
  17. ^ Wargocki, Pawel, and Olli A. Seppänen, et al. (2006) "Indoor Climate and Productivity in Offices". Vol. 6. REHVA Guidebooks 6. Brussels, Belgium: REHVA, Federation of European Heating and Air-conditioning Associations.
  18. ^ Wyon, D.P.; Andersen, I.; Lundqvist, G.R. (1981), "Effects of Moderate Heat Stress on Mental Performance", Studies in Environmental Science, vol. 5, no. 4, Elsevier, pp. 251–267, doi:10.1016/s0166-1116(08)71093-8, ISBN 9780444997616, PMID 538426
  19. ^ Fang, L; Wyon, DP; Clausen, G; Fanger, PO (2004). "Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance". Indoor Air. 14 (Suppl 7): 74–81. doi:10.1111/j.1600-0668.2004.00276.x. PMID 15330775.
  20. ^ Cabanac, Michel (1971). "Physiological role of pleasure". Science. 173 (4002): 1103–7. Bibcode:1971Sci...173.1103C. doi:10.1126/science.173.4002.1103. PMID 5098954. S2CID 38234571.
  21. ^ Parkinson, Thomas; de Dear, Richard (2014-12-15). "Thermal pleasure in built environments: physiology of alliesthesia". Building Research & Information. 43 (3): 288–301. doi:10.1080/09613218.2015.989662. ISSN 0961-3218. S2CID 109419103.
  22. ^ Hitchings, Russell; Shu Jun Lee (2008). "Air Conditioning and the Material Culture of Routine Human Encasement". Journal of Material Culture. 13 (3): 251–265. doi:10.1177/1359183508095495. ISSN 1359-1835. S2CID 144084245.
  23. ^ Toftum, J. (2005). "Thermal Comfort Indices". Handbook of Human Factors and Ergonomics Methods. Boca Raton, FL, USA: 63.CRC Press.[page needed]
  24. ^ Smolander, J. (2002). "Effect of Cold Exposure on Older Humans". International Journal of Sports Medicine. 23 (2): 86–92. doi:10.1055/s-2002-20137. PMID 11842354. S2CID 26072420.
  25. ^ Khodakarami, J. (2009). Achieving thermal comfort. VDM Verlag. ISBN 978-3-639-18292-7.[page needed]
  26. ^ Thermal Comfort chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005[page needed]
  27. ^ Ainsworth, BE; Haskell, WL; Whitt, MC; Irwin, ML; Swartz, AM; Strath, SJ; O'Brien, WL; Bassett Jr, DR; Schmitz, KH; Emplaincourt, PO; Jacobs Jr, DR; Leon, AS (2000). "Compendium of physical activities: An update of activity codes and MET intensities". Medicine & Science in Sports & Exercise. 32 (9 Suppl): S498–504. CiteSeerX 10.1.1.524.3133. doi:10.1097/00005768-200009001-00009. PMID 10993420.
  28. ^ a b Szokolay, Steven V. (2010). Introduction to Architectural Science: The Basis of Sustainable Design (2nd ed.). pp. 16–22.
  29. ^ Havenith, G (1999). "Heat balance when wearing protective clothing". The Annals of Occupational Hygiene. 43 (5): 289–96. CiteSeerX 10.1.1.566.3967. doi:10.1016/S0003-4878(99)00051-4. PMID 10481628.
  30. ^ McCullough, Elizabeth A.; Eckels, Steve; Harms, Craig (2009). "Determining temperature ratings for children's cold weather clothing". Applied Ergonomics. 40 (5): 870–7. doi:10.1016/j.apergo.2008.12.004. PMID 19272588.
  31. ^ Frank C. Mooren, ed. (2012). "Skin Wettedness". Encyclopedia of Exercise Medicine in Health and Disease. p. 790. doi:10.1007/978-3-540-29807-6_3041. ISBN 978-3-540-36065-0.
  32. ^ Fukazawa, Takako; Havenith, George (2009). "Differences in comfort perception in relation to local and whole-body skin wetness". European Journal of Applied Physiology. 106 (1): 15–24. doi:10.1007/s00421-009-0983-z. PMID 19159949. S2CID 9932558.
  33. ^ a b ANSI, ASHRAE, 2020. Standard - 55 Thermal environmental conditions for human occupancy.
  34. ^ Balaras, Constantinos A.; Dascalaki, Elena; Gaglia, Athina (2007). "HVAC and indoor thermal conditions in hospital operating rooms". Energy and Buildings. 39 (4): 454. doi:10.1016/j.enbuild.2006.09.004.
  35. ^ Wolkoff, Peder; Kjaergaard, Søren K. (2007). "The dichotomy of relative humidity on indoor air quality". Environment International. 33 (6): 850–7. doi:10.1016/j.envint.2007.04.004. PMID 17499853.
  36. ^ Hashiguchi, Nobuko; Tochihara, Yutaka (2009). "Effects of low humidity and high air velocity in a heated room on physiological responses and thermal comfort after bathing: An experimental study". International Journal of Nursing Studies. 46 (2): 172–80. doi:10.1016/j.ijnurstu.2008.09.014. PMID 19004439.
  37. ^ McMullan, Randall (2012). Environmental Science in Building. Macmillan International Higher Education. p. 25. ISBN 9780230390355.[permanent dead link]
  38. ^ "Humidity". Humidity. The Columbia Electronic Encyclopedia (6th ed.). Columbia University Press. 2012.
  39. ^ "How the weather makes you hot and cold". Popular Mechanics. Hearst Magazines. July 1935. p. 36.
  40. ^ Morris, Nathan B.; English, Timothy; Hospers, Lily; Capon, Anthony; Jay, Ollie (2019-08-06). "The Effects of Electric Fan Use Under Differing Resting Heat Index Conditions: A Clinical Trial". Annals of Internal Medicine. 171 (9). American College of Physicians: 675–677. doi:10.7326/m19-0512. ISSN 0003-4819. PMID 31382270. S2CID 199447588.
  41. ^ "Radiation and Thermal Comfort for Indoor Spaces | SimScale Blog". SimScale. 2019-06-27. Retrieved 2019-10-14.
  42. ^ Humphreys, Michael A.; Nicol, J. Fergus; Raja, Iftikhar A. (2007). "Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach". Advances in Building Energy Research. 1 (1): 55–88. doi:10.1080/17512549.2007.9687269. ISSN 1751-2549. S2CID 109030483.
  43. ^ Brager, Gail S.; de Dear, Richard J. (1998). "Thermal adaptation in the built environment: a literature review". Energy and Buildings. 27 (1): 83–96. doi:10.1016/S0378-7788(97)00053-4. ISSN 0378-7788. S2CID 114893272.
  44. ^ Hoyt, Tyler; Schiavon, Stefano; Piccioli, Alberto; Moon, Dustin; Steinfeld, Kyle (2013). "CBE Thermal Comfort Tool". Center for the Built Environment, University of California, Berkeley. Retrieved 21 November 2013.
  45. ^ a b Cheung, Toby; Schiavon, Stefano; Parkinson, Thomas; Li, Peixian; Brager, Gail (2019-04-15). "Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II". Building and Environment. 153: 205–217. doi:10.1016/j.buildenv.2019.01.055. ISSN 0360-1323. S2CID 115526743.
  46. ^ Földváry Ličina, Veronika; Cheung, Toby; Zhang, Hui; de Dear, Richard; Parkinson, Thomas; Arens, Edward; Chun, Chungyoon; Schiavon, Stefano; Luo, Maohui (2018-09-01). "Development of the ASHRAE Global Thermal Comfort Database II". Building and Environment. 142: 502–512. doi:10.1016/j.buildenv.2018.06.022. hdl:11311/1063927. ISSN 0360-1323. S2CID 115289014.
  47. ^ WC16 Saberi (PDF). p. 1329 (p. 5 in the PDF). Archived from the original (PDF) on 23 June 2016. Retrieved 31 May 2017.
  48. ^ a b c Gagge, AP; Fobelets, AP; Berglund, LG (1986). "A standard predictive index of human response to the thermal environment". ASHRAE Transactions. 92 (2nd ed.): 709–31.
  49. ^ a b Doherty, TJ; Arens, E.A. (1988). "Evaluation of the physiological bases of thermal comfort models". ASHRAE Transactions. 94 (1): 15.
  50. ^ Berglund, Larry (1978). "Mathematical models for predicting the thermal comfort response of building occupants". ASHRAE Transactions. 84.
  51. ^ Fountain, Mark; Huizenga, Charlie (1997). "A thermal sensation prediction software tool for use by the profession". ASHRAE Transactions. 103 (2).
  52. ^ La Roche, P. (2011). Carbon-neutral architectural design. CRC Press.[page needed]
  53. ^ EN 15251 Standard 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
  54. ^ a b Rohles, Frederick H. (February 2007). "Temperature & Temperament - A Psychologist Looks at Comfort". ASHRAE Journal: 14–22.
  55. ^ a b c Szokolay, Steven V. (2010). Introduction to Architectural Science: The Basis of Sustainable Design (2nd ed.). p. 19.
  56. ^ a b Nicol, J Fergus (2001). "Characterising Occupant Behaviour in Buildings" (PDF). Proceedings of the Seventh International IBPSA Conference. Rio de Janeiro, Brazil. pp. 1073–1078.
  57. ^ Haldi, Frédéric; Robinson, Darren (2008). "On the behaviour and adaptation of office occupants". Building and Environment. 43 (12): 2163. doi:10.1016/j.buildenv.2008.01.003.
  58. ^ a b c Lenzuni, P.; Freda, D.; Del Gaudio, M. (2009). "Classification of Thermal Environments for Comfort Assessment". Annals of Occupational Hygiene. 53 (4): 325–32. doi:10.1093/annhyg/mep012. PMID 19299555.
  59. ^ Wyon, D.P.; Andersen, I.; Lundqvist, G.R. (2009). "Spontaneous magnitude estimation of thermal discomfort during changes in the ambient temperature*". Journal of Hygiene. 70 (2): 203–21. doi:10.1017/S0022172400022269. PMC 2130040. PMID 4503865.
  60. ^ Karjalainen, Sami (2007). "Biological sex differences in thermal comfort and use of thermostats in everyday thermal environments". Building and Environment. 42 (4): 1594–1603. doi:10.1016/j.buildenv.2006.01.009.
  61. ^ Lan, Li; Lian, Zhiwei; Liu, Weiwei; Liu, Yuanmou (2007). "Investigation of biological sex difference in thermal comfort for Chinese people". European Journal of Applied Physiology. 102 (4): 471–80. doi:10.1007/s00421-007-0609-2. PMID 17994246. S2CID 26541128.
  62. ^ Harimi Djamila; Chi Chu Ming; Sivakumar Kumaresan (6–7 November 2012), "Assessment of Gender Differences in Their Thermal Sensations to the Indoor Thermal Environment", Engineering Goes Green, 7th CUTSE Conference, Sarawak Malaysia: School of Engineering & Science, Curtin University, pp. 262–266, ISBN 978-983-44482-3-3.
  63. ^ Yu, Jinghua; Yang, Changzhi; Tian, Liwei; Liao, Dan (2009). "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China". Applied Energy. 86 (10): 1970. doi:10.1016/j.apenergy.2009.01.012.
  64. ^ Silva, Vicente de Paulo Rodrigues; De Azevedo, Pedro Vieira; Brito, Robson Souto; Campos, João Hugo Baracuy (2009). "Evaluating the urban climate of a typically tropical city of northeastern Brazil". Environmental Monitoring and Assessment. 161 (1–4): 45–59. doi:10.1007/s10661-008-0726-3. PMID 19184489. S2CID 23126235..
  65. ^ United States Environmental Protection Agency. Office of Air and Radiation. Office of the Administrator.; Smart Growth Network (2003). Smart Growth and Urban Heat Islands. (EPA-content)
  66. ^ Shmaefsky, Brian R. (2006). "One Hot Demonstration: The Urban Heat Island Effect" (PDF). Journal of College Science Teaching. 35 (7): 52–54. Archived (PDF) from the original on 2022-03-16.
  67. ^ Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. (2009). "Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates". Energy and Buildings. 41 (6): 607. doi:10.1016/j.enbuild.2008.12.005.
  68. ^ Nasrollahi, N. (2009). Thermal environments and occupant thermal comfort. VDM Verlag, 2009, ISBN 978-3-639-16978-2.[page needed]
  69. ^ "About the WBGT and Apparent Temperature Indices".
  70. ^ Hancock, P. A.; Ross, Jennifer M.; Szalma, James L. (2007). "A Meta-Analysis of Performance Response Under Thermal Stressors". Human Factors: The Journal of the Human Factors and Ergonomics Society. 49 (5): 851–77. doi:10.1518/001872007X230226. PMID 17915603. S2CID 17379285.
  71. ^ Leon, Lisa R. (2008). "Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure". Toxicology and Applied Pharmacology. 233 (1): 146–61. doi:10.1016/j.taap.2008.01.012. PMID 18313713.
  72. ^ ISO, 2004. ISO 7933 - Ergonomics of the thermal environment — Analytical determination and interpretation of heat stress using calculation of the predicted heat strain.
  73. ^ "OSHA Technical Manual (OTM) Section III: Chapter 4". osha.gov. September 15, 2017. Retrieved January 11, 2024.
  74. ^ Peeters, Leen; Dear, Richard de; Hensen, Jan; d’Haeseleer, William (2009). "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation". Applied Energy. 86 (5): 772. doi:10.1016/j.apenergy.2008.07.011.
  75. ^ Barwood, Martin J.; Newton, Phillip S.; Tipton, Michael J. (2009). "Ventilated Vest and Tolerance for Intermittent Exercise in Hot, Dry Conditions with Military Clothing". Aviation, Space, and Environmental Medicine. 80 (4): 353–9. doi:10.3357/ASEM.2411.2009. PMID 19378904.
  76. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts". Building and Environment. 45 (2): 380. doi:10.1016/j.buildenv.2009.06.018. S2CID 220973362.
  77. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts". Building and Environment. 45 (2): 389. doi:10.1016/j.buildenv.2009.06.015.
  78. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort". Building and Environment. 45 (2): 399. doi:10.1016/j.buildenv.2009.06.020.
  79. ^ Tsushima, Yoshiaki; Okada, Sho; Kawai, Yuka; Sumita, Akio; Ando, Hiroshi; Miki, Mitsunori (10 August 2020). "Effect of illumination on perceived temperature". PLOS ONE. 15 (8): e0236321. Bibcode:2020PLoSO..1536321T. doi:10.1371/journal.pone.0236321. PMC 7416916. PMID 32776987.
  80. ^ Ziat, Mounia; Balcer, Carrie Anne; Shirtz, Andrew; Rolison, Taylor (2016). "A Century Later, the Hue-Heat Hypothesis: Does Color Truly Affect Temperature Perception?". Haptics: Perception, Devices, Control, and Applications. Lecture Notes in Computer Science. Vol. 9774. pp. 273–280. doi:10.1007/978-3-319-42321-0_25. ISBN 978-3-319-42320-3.
  81. ^ "Hue Heat". Medium. 10 April 2022. Retrieved 15 May 2023.
  82. ^ Toftum, Jørn; Thorseth, Anders; Markvart, Jakob; Logadóttir, Ásta (October 2018). "Occupant response to different correlated colour temperatures of white LED lighting" (PDF). Building and Environment. 143: 258–268. doi:10.1016/j.buildenv.2018.07.013. S2CID 115803800.
  83. ^ "Temperature - Colour - National 5 Art and Design Revision". BBC Bitesize. Retrieved 15 May 2023.
  84. ^ Khodakarami, Jamal; Nasrollahi, Nazanin (2012). "Thermal comfort in hospitals – A literature review". Renewable and Sustainable Energy Reviews. 16 (6): 4071. doi:10.1016/j.rser.2012.03.054.
  85. ^ a b Zhang, H.; Arens, E.; Zhai, Y. (2015). "A review of the corrective power of personal comfort systems in non-neutral ambient environments". Building and Environment. 91: 15–41. doi:10.1016/j.buildenv.2015.03.013.
  86. ^ Andersen, M.; Fiero, G.; Kumar, S. (21–26 August 2016). "Well-Connected Microzones for Increased Building Efficiency and Occupant Comfort". Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings.

Further reading

[edit]
  • Thermal Comfort, Fanger, P. O, Danish Technical Press, 1970 (Republished by McGraw-Hill, New York, 1973).
  • Thermal Comfort chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005.
  • Weiss, Hal (1998). Secrets of Warmth: For Comfort or Survival. Seattle, WA: Mountaineers Books. ISBN 978-0-89886-643-8. OCLC 40999076.
  • Godish, T. Indoor Environmental Quality. Boca Raton: CRC Press, 2001.
  • Bessoudo, M. Building Facades and Thermal Comfort: The impacts of climate, solar shading, and glazing on the indoor thermal environment. VDM Verlag, 2008
  • Nicol, Fergus (2012). Adaptive thermal comfort : principles and practice. London New York: Routledge. ISBN 978-0415691598.
  • Humphreys, Michael (2016). Adaptive thermal comfort : foundations and analysis. Abingdon, U.K. New York, NY: Routledge. ISBN 978-0415691611.
  • Communications in development and assembly of textile products, Open Access Journal, ISSN 2701-939X
  • Heat Stress, National Institute for Occupational Safety and Health.
  • Cold Stress, National Institute for Occupational Safety and Health.

 

 

An ab anbar (water reservoir) with double domes and windcatchers (openings near the top of the towers) in the central desert city of Naeen, Iran. Windcatchers are a form of natural ventilation.[1]

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.

The intentional introduction of outdoor air is usually categorized as either mechanical ventilation, natural ventilation, or mixed-mode ventilation.[2]

  • Mechanical ventilation is the intentional fan-driven flow of outdoor air into and/or out from a building. Mechanical ventilation systems may include supply fans (which push outdoor air into a building), exhaust[3] fans (which draw air out of a building and thereby cause equal ventilation flow into a building), or a combination of both (called balanced ventilation if it neither pressurizes nor depressurizes the inside air,[3] or only slightly depressurizes it). Mechanical ventilation is often provided by equipment that is also used to heat and cool a space.
  • Natural ventilation is the intentional passive flow of outdoor air into a building through planned openings (such as louvers, doors, and windows). Natural ventilation does not require mechanical systems to move outdoor air. Instead, it relies entirely on passive physical phenomena, such as wind pressure, or the stack effect. Natural ventilation openings may be fixed, or adjustable. Adjustable openings may be controlled automatically (automated), owned by occupants (operable), or a combination of both. Cross ventilation is a phenomenon of natural ventilation.
  • Mixed-mode ventilation systems use both mechanical and natural processes. The mechanical and natural components may be used at the same time, at different times of day, or in different seasons of the year.[4] Since natural ventilation flow depends on environmental conditions, it may not always provide an appropriate amount of ventilation. In this case, mechanical systems may be used to supplement or regulate the naturally driven flow.

Ventilation is typically described as separate from infiltration.

  • Infiltration is the circumstantial flow of air from outdoors to indoors through leaks (unplanned openings) in a building envelope. When a building design relies on infiltration to maintain indoor air quality, this flow has been referred to as adventitious ventilation.[5]

The design of buildings that promote occupant health and well-being requires a clear understanding of the ways that ventilation airflow interacts with, dilutes, displaces, or introduces pollutants within the occupied space. Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[6] A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of occupant health and energy.[7] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[8] In kitchen ventilation systems, or for laboratory fume hoods, the design of effective effluent capture can be more important than the bulk amount of ventilation in a space. More generally, the way that an air distribution system causes ventilation to flow into and out of a space impacts the ability of a particular ventilation rate to remove internally generated pollutants. The ability of a system to reduce pollution in space is described as its "ventilation effectiveness". However, the overall impacts of ventilation on indoor air quality can depend on more complex factors such as the sources of pollution, and the ways that activities and airflow interact to affect occupant exposure.

An array of factors related to the design and operation of ventilation systems are regulated by various codes and standards. Standards dealing with the design and operation of ventilation systems to achieve acceptable indoor air quality include the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standards 62.1 and 62.2, the International Residential Code, the International Mechanical Code, and the United Kingdom Building Regulations Part F. Other standards that focus on energy conservation also impact the design and operation of ventilation systems, including ASHRAE Standard 90.1, and the International Energy Conservation Code.

When indoor and outdoor conditions are favorable, increasing ventilation beyond the minimum required for indoor air quality can significantly improve both indoor air quality and thermal comfort through ventilative cooling, which also helps reduce the energy demand of buildings.[9][10] During these times, higher ventilation rates, achieved through passive or mechanical means (air-side economizer, ventilative pre-cooling), can be particularly beneficial for enhancing people's physical health.[11] Conversely, when conditions are less favorable, maintaining or improving indoor air quality through ventilation may require increased use of mechanical heating or cooling, leading to higher energy consumption.

Ventilation should be considered for its relationship to "venting" for appliances and combustion equipment such as water heaters, furnaces, boilers, and wood stoves. Most importantly, building ventilation design must be careful to avoid the backdraft of combustion products from "naturally vented" appliances into the occupied space. This issue is of greater importance for buildings with more air-tight envelopes. To avoid the hazard, many modern combustion appliances utilize "direct venting" which draws combustion air directly from outdoors, instead of from the indoor environment.

Design of air flow in rooms

[edit]

The air in a room can be supplied and removed in several ways, for example via ceiling ventilation, cross ventilation, floor ventilation or displacement ventilation.[citation needed]

Furthermore, the air can be circulated in the room using vortexes which can be initiated in various ways:

Ventilation rates for indoor air quality

[edit]

The ventilation rate, for commercial, industrial, and institutional (CII) buildings, is normally expressed by the volumetric flow rate of outdoor air, introduced to the building. The typical units used are cubic feet per minute (CFM) in the imperial system, or liters per second (L/s) in the metric system (even though cubic meter per second is the preferred unit for volumetric flow rate in the SI system of units). The ventilation rate can also be expressed on a per person or per unit floor area basis, such as CFM/p or CFM/ft², or as air changes per hour (ACH).

Standards for residential buildings

[edit]

For residential buildings, which mostly rely on infiltration for meeting their ventilation needs, a common ventilation rate measure is the air change rate (or air changes per hour): the hourly ventilation rate divided by the volume of the space (I or ACH; units of 1/h). During the winter, ACH may range from 0.50 to 0.41 in a tightly air-sealed house to 1.11 to 1.47 in a loosely air-sealed house.[12]

ASHRAE now recommends ventilation rates dependent upon floor area, as a revision to the 62-2001 standard, in which the minimum ACH was 0.35, but no less than 15 CFM/person (7.1 L/s/person). As of 2003, the standard has been changed to 3 CFM/100 sq. ft. (15 L/s/100 sq. m.) plus 7.5 CFM/person (3.5 L/s/person).[13]

Standards for commercial buildings

[edit]

Ventilation rate procedure

[edit]

Ventilation Rate Procedure is rate based on standard and prescribes the rate at which ventilation air must be delivered to space and various means to the condition that air.[14] Air quality is assessed (through CO2 measurement) and ventilation rates are mathematically derived using constants. Indoor Air Quality Procedure uses one or more guidelines for the specification of acceptable concentrations of certain contaminants in indoor air but does not prescribe ventilation rates or air treatment methods.[14] This addresses both quantitative and subjective evaluations and is based on the Ventilation Rate Procedure. It also accounts for potential contaminants that may have no measured limits, or for which no limits are not set (such as formaldehyde off-gassing from carpet and furniture).

Natural ventilation

[edit]

Natural ventilation harnesses naturally available forces to supply and remove air in an enclosed space. Poor ventilation in rooms is identified to significantly increase the localized moldy smell in specific places of the room including room corners.[11] There are three types of natural ventilation occurring in buildings: wind-driven ventilation, pressure-driven flows, and stack ventilation.[15] The pressures generated by 'the stack effect' rely upon the buoyancy of heated or rising air. Wind-driven ventilation relies upon the force of the prevailing wind to pull and push air through the enclosed space as well as through breaches in the building's envelope.

Almost all historic buildings were ventilated naturally.[16] The technique was generally abandoned in larger US buildings during the late 20th century as the use of air conditioning became more widespread. However, with the advent of advanced Building Performance Simulation (BPS) software, improved Building Automation Systems (BAS), Leadership in Energy and Environmental Design (LEED) design requirements, and improved window manufacturing techniques; natural ventilation has made a resurgence in commercial buildings both globally and throughout the US.[17]

The benefits of natural ventilation include:

  • Improved indoor air quality (IAQ)
  • Energy savings
  • Reduction of greenhouse gas emissions
  • Occupant control
  • Reduction in occupant illness associated with sick building syndrome
  • Increased worker productivity

Techniques and architectural features used to ventilate buildings and structures naturally include, but are not limited to:

  • Operable windows
  • Clerestory windows and vented skylights
  • Lev/convection doors
  • Night purge ventilation
  • Building orientation
  • Wind capture façades

Airborne diseases

[edit]

Natural ventilation is a key factor in reducing the spread of airborne illnesses such as tuberculosis, the common cold, influenza, meningitis or COVID-19.[18] Opening doors and windows are good ways to maximize natural ventilation, which would make the risk of airborne contagion much lower than with costly and maintenance-requiring mechanical systems. Old-fashioned clinical areas with high ceilings and large windows provide the greatest protection. Natural ventilation costs little and is maintenance-free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion. Natural ventilation requires little maintenance and is inexpensive.[19]

Natural ventilation is not practical in much of the infrastructure because of climate. This means that the facilities need to have effective mechanical ventilation systems and or use Ceiling Level UV or FAR UV ventilation systems.

Ventilation is measured in terms of air changes per hour (ACH). As of 2023, the CDC recommends that all spaces have a minimum of 5 ACH.[20] For hospital rooms with airborne contagions the CDC recommends a minimum of 12 ACH.[21] Challenges in facility ventilation are public unawareness,[22][23] ineffective government oversight, poor building codes that are based on comfort levels, poor system operations, poor maintenance, and lack of transparency.[24]

Pressure, both political and economic, to improve energy conservation has led to decreased ventilation rates. Heating, ventilation, and air conditioning rates have dropped since the energy crisis in the 1970s and the banning of cigarette smoke in the 1980s and 1990s.[25][26][better source needed]

Mechanical ventilation

[edit]
An axial belt-drive exhaust fan serving an underground car park. This exhaust fan's operation is interlocked with the concentration of contaminants emitted by internal combustion engines.

Mechanical ventilation of buildings and structures can be achieved by the use of the following techniques:

  • Whole-house ventilation
  • Mixing ventilation
  • Displacement ventilation
  • Dedicated subaerial air supply

Demand-controlled ventilation (DCV)

[edit]

Demand-controlled ventilation (DCV, also known as Demand Control Ventilation) makes it possible to maintain air quality while conserving energy.[27][28] ASHRAE has determined that "It is consistent with the ventilation rate procedure that demand control be permitted for use to reduce the total outdoor air supply during periods of less occupancy."[29] In a DCV system, CO2 sensors control the amount of ventilation.[30][31] During peak occupancy, CO2 levels rise, and the system adjusts to deliver the same amount of outdoor air as would be used by the ventilation-rate procedure.[32] However, when spaces are less occupied, CO2 levels reduce, and the system reduces ventilation to conserves energy. DCV is a well-established practice,[33] and is required in high occupancy spaces by building energy standards such as ASHRAE 90.1.[34]

Personalized ventilation

[edit]

Personalized ventilation is an air distribution strategy that allows individuals to control the amount of ventilation received. The approach delivers fresh air more directly to the breathing zone and aims to improve the air quality of inhaled air. Personalized ventilation provides much higher ventilation effectiveness than conventional mixing ventilation systems by displacing pollution from the breathing zone with far less air volume. Beyond improved air quality benefits, the strategy can also improve occupants' thermal comfort, perceived air quality, and overall satisfaction with the indoor environment. Individuals' preferences for temperature and air movement are not equal, and so traditional approaches to homogeneous environmental control have failed to achieve high occupant satisfaction. Techniques such as personalized ventilation facilitate control of a more diverse thermal environment that can improve thermal satisfaction for most occupants.

Local exhaust ventilation

[edit]

Local exhaust ventilation addresses the issue of avoiding the contamination of indoor air by specific high-emission sources by capturing airborne contaminants before they are spread into the environment. This can include water vapor control, lavatory effluent control, solvent vapors from industrial processes, and dust from wood- and metal-working machinery. Air can be exhausted through pressurized hoods or the use of fans and pressurizing a specific area.[35]
A local exhaust system is composed of five basic parts:

  1. A hood that captures the contaminant at its source
  2. Ducts for transporting the air
  3. An air-cleaning device that removes/minimizes the contaminant
  4. A fan that moves the air through the system
  5. An exhaust stack through which the contaminated air is discharged[35]

In the UK, the use of LEV systems has regulations set out by the Health and Safety Executive (HSE) which are referred to as the Control of Substances Hazardous to Health (CoSHH). Under CoSHH, legislation is set to protect users of LEV systems by ensuring that all equipment is tested at least every fourteen months to ensure the LEV systems are performing adequately. All parts of the system must be visually inspected and thoroughly tested and where any parts are found to be defective, the inspector must issue a red label to identify the defective part and the issue.

The owner of the LEV system must then have the defective parts repaired or replaced before the system can be used.

Smart ventilation

[edit]

Smart ventilation is a process of continually adjusting the ventilation system in time, and optionally by location, to provide the desired IAQ benefits while minimizing energy consumption, utility bills, and other non-IAQ costs (such as thermal discomfort or noise). A smart ventilation system adjusts ventilation rates in time or by location in a building to be responsive to one or more of the following: occupancy, outdoor thermal and air quality conditions, electricity grid needs, direct sensing of contaminants, operation of other air moving and air cleaning systems. In addition, smart ventilation systems can provide information to building owners, occupants, and managers on operational energy consumption and indoor air quality as well as a signal when systems need maintenance or repair. Being responsive to occupancy means that a smart ventilation system can adjust ventilation depending on demand such as reducing ventilation if the building is unoccupied. Smart ventilation can time-shift ventilation to periods when a) indoor-outdoor temperature differences are smaller (and away from peak outdoor temperatures and humidity), b) when indoor-outdoor temperatures are appropriate for ventilative cooling, or c) when outdoor air quality is acceptable. Being responsive to electricity grid needs means providing flexibility to electricity demand (including direct signals from utilities) and integration with electric grid control strategies. Smart ventilation systems can have sensors to detect airflow, systems pressures, or fan energy use in such a way that systems failures can be detected and repaired, as well as when system components need maintenance, such as filter replacement.[36]

Ventilation and combustion

[edit]

Combustion (in a fireplace, gas heater, candle, oil lamp, etc.) consumes oxygen while producing carbon dioxide and other unhealthy gases and smoke, requiring ventilation air. An open chimney promotes infiltration (i.e. natural ventilation) because of the negative pressure change induced by the buoyant, warmer air leaving through the chimney. The warm air is typically replaced by heavier, cold air.

Ventilation in a structure is also needed for removing water vapor produced by respiration, burning, and cooking, and for removing odors. If water vapor is permitted to accumulate, it may damage the structure, insulation, or finishes. [citation needed] When operating, an air conditioner usually removes excess moisture from the air. A dehumidifier may also be appropriate for removing airborne moisture.

Calculation for acceptable ventilation rate

[edit]

Ventilation guidelines are based on the minimum ventilation rate required to maintain acceptable levels of effluents. Carbon dioxide is used as a reference point, as it is the gas of highest emission at a relatively constant value of 0.005 L/s. The mass balance equation is:

Q = G/(Ci − Ca)

  • Q = ventilation rate (L/s)
  • G = CO2 generation rate
  • Ci = acceptable indoor CO2 concentration
  • Ca = ambient CO2 concentration[37]

Smoking and ventilation

[edit]

ASHRAE standard 62 states that air removed from an area with environmental tobacco smoke shall not be recirculated into ETS-free air. A space with ETS requires more ventilation to achieve similar perceived air quality to that of a non-smoking environment.

The amount of ventilation in an ETS area is equal to the amount of an ETS-free area plus the amount V, where:

V = DSD × VA × A/60E

  • V = recommended extra flow rate in CFM (L/s)
  • DSD = design smoking density (estimated number of cigarettes smoked per hour per unit area)
  • VA = volume of ventilation air per cigarette for the room being designed (ft3/cig)
  • E = contaminant removal effectiveness[38]

History

[edit]
This ancient Roman house uses a variety of passive cooling and passive ventilation techniques. Heavy masonry walls, small exterior windows, and a narrow walled garden oriented N-S shade the house, preventing heat gain. The house opens onto a central atrium with an impluvium (open to the sky); the evaporative cooling of the water causes a cross-draft from atrium to garden.

Primitive ventilation systems were found at the Pločnik archeological site (belonging to the Vinča culture) in Serbia and were built into early copper smelting furnaces. The furnace, built on the outside of the workshop, featured earthen pipe-like air vents with hundreds of tiny holes in them and a prototype chimney to ensure air goes into the furnace to feed the fire and smoke comes out safely.[39]

Passive ventilation and passive cooling systems were widely written about around the Mediterranean by Classical times. Both sources of heat and sources of cooling (such as fountains and subterranean heat reservoirs) were used to drive air circulation, and buildings were designed to encourage or exclude drafts, according to climate and function. Public bathhouses were often particularly sophisticated in their heating and cooling. Icehouses are some millennia old, and were part of a well-developed ice industry by classical times.

The development of forced ventilation was spurred by the common belief in the late 18th and early 19th century in the miasma theory of disease, where stagnant 'airs' were thought to spread illness. An early method of ventilation was the use of a ventilating fire near an air vent which would forcibly cause the air in the building to circulate. English engineer John Theophilus Desaguliers provided an early example of this when he installed ventilating fires in the air tubes on the roof of the House of Commons. Starting with the Covent Garden Theatre, gas burning chandeliers on the ceiling were often specially designed to perform a ventilating role.

Mechanical systems

[edit]
The Central Tower of the Palace of Westminster. This octagonal spire was for ventilation purposes, in the more complex system imposed by Reid on Barry, in which it was to draw air out of the Palace. The design was for the aesthetic disguise of its function.[40][41]

A more sophisticated system involving the use of mechanical equipment to circulate the air was developed in the mid-19th century. A basic system of bellows was put in place to ventilate Newgate Prison and outlying buildings, by the engineer Stephen Hales in the mid-1700s. The problem with these early devices was that they required constant human labor to operate. David Boswell Reid was called to testify before a Parliamentary committee on proposed architectural designs for the new House of Commons, after the old one burned down in a fire in 1834.[40] In January 1840 Reid was appointed by the committee for the House of Lords dealing with the construction of the replacement for the Houses of Parliament. The post was in the capacity of ventilation engineer, in effect; and with its creation there began a long series of quarrels between Reid and Charles Barry, the architect.[42]

Reid advocated the installation of a very advanced ventilation system in the new House. His design had air being drawn into an underground chamber, where it would undergo either heating or cooling. It would then ascend into the chamber through thousands of small holes drilled into the floor, and would be extracted through the ceiling by a special ventilation fire within a great stack.[43]

Reid's reputation was made by his work in Westminster. He was commissioned for an air quality survey in 1837 by the Leeds and Selby Railway in their tunnel.[44] The steam vessels built for the Niger expedition of 1841 were fitted with ventilation systems based on Reid's Westminster model.[45] Air was dried, filtered and passed over charcoal.[46][47] Reid's ventilation method was also applied more fully to St. George's Hall, Liverpool, where the architect, Harvey Lonsdale Elmes, requested that Reid should be involved in ventilation design.[48] Reid considered this the only building in which his system was completely carried out.[49]

Fans

[edit]

With the advent of practical steam power, ceiling fans could finally be used for ventilation. Reid installed four steam-powered fans in the ceiling of St George's Hospital in Liverpool, so that the pressure produced by the fans would force the incoming air upward and through vents in the ceiling. Reid's pioneering work provides the basis for ventilation systems to this day.[43] He was remembered as "Dr. Reid the ventilator" in the twenty-first century in discussions of energy efficiency, by Lord Wade of Chorlton.[50]

History and development of ventilation rate standards

[edit]

Ventilating a space with fresh air aims to avoid "bad air". The study of what constitutes bad air dates back to the 1600s when the scientist Mayow studied asphyxia of animals in confined bottles.[51] The poisonous component of air was later identified as carbon dioxide (CO2), by Lavoisier in the very late 1700s, starting a debate as to the nature of "bad air" which humans perceive to be stuffy or unpleasant. Early hypotheses included excess concentrations of CO2 and oxygen depletion. However, by the late 1800s, scientists thought biological contamination, not oxygen or CO2, was the primary component of unacceptable indoor air. However, it was noted as early as 1872 that CO2 concentration closely correlates to perceived air quality.

The first estimate of minimum ventilation rates was developed by Tredgold in 1836.[52] This was followed by subsequent studies on the topic by Billings [53] in 1886 and Flugge in 1905. The recommendations of Billings and Flugge were incorporated into numerous building codes from 1900–the 1920s and published as an industry standard by ASHVE (the predecessor to ASHRAE) in 1914.[51]

The study continued into the varied effects of thermal comfort, oxygen, carbon dioxide, and biological contaminants. The research was conducted with human subjects in controlled test chambers. Two studies, published between 1909 and 1911, showed that carbon dioxide was not the offending component. Subjects remained satisfied in chambers with high levels of CO2, so long as the chamber remained cool.[51] (Subsequently, it has been determined that CO2 is, in fact, harmful at concentrations over 50,000ppm[54])

ASHVE began a robust research effort in 1919. By 1935, ASHVE-funded research conducted by Lemberg, Brandt, and Morse – again using human subjects in test chambers – suggested the primary component of "bad air" was an odor, perceived by the human olfactory nerves.[55] Human response to odor was found to be logarithmic to contaminant concentrations, and related to temperature. At lower, more comfortable temperatures, lower ventilation rates were satisfactory. A 1936 human test chamber study by Yaglou, Riley, and Coggins culminated much of this effort, considering odor, room volume, occupant age, cooling equipment effects, and recirculated air implications, which guided ventilation rates.[56] The Yaglou research has been validated, and adopted into industry standards, beginning with the ASA code in 1946. From this research base, ASHRAE (having replaced ASHVE) developed space-by-space recommendations, and published them as ASHRAE Standard 62-1975: Ventilation for acceptable indoor air quality.

As more architecture incorporated mechanical ventilation, the cost of outdoor air ventilation came under some scrutiny. In 1973, in response to the 1973 oil crisis and conservation concerns, ASHRAE Standards 62-73 and 62–81) reduced required ventilation from 10 CFM (4.76 L/s) per person to 5 CFM (2.37 L/s) per person. In cold, warm, humid, or dusty climates, it is preferable to minimize ventilation with outdoor air to conserve energy, cost, or filtration. This critique (e.g. Tiller[57]) led ASHRAE to reduce outdoor ventilation rates in 1981, particularly in non-smoking areas. However subsequent research by Fanger,[58] W. Cain, and Janssen validated the Yaglou model. The reduced ventilation rates were found to be a contributing factor to sick building syndrome.[59]

The 1989 ASHRAE standard (Standard 62–89) states that appropriate ventilation guidelines are 20 CFM (9.2 L/s) per person in an office building, and 15 CFM (7.1 L/s) per person for schools, while 2004 Standard 62.1-2004 has lower recommendations again (see tables below). ANSI/ASHRAE (Standard 62–89) speculated that "comfort (odor) criteria are likely to be satisfied if the ventilation rate is set so that 1,000 ppm CO2 is not exceeded"[60] while OSHA has set a limit of 5000 ppm over 8 hours.[61]

Historical ventilation rates
Author or source Year Ventilation rate (IP) Ventilation rate (SI) Basis or rationale
Tredgold 1836 4 CFM per person 2 L/s per person Basic metabolic needs, breathing rate, and candle burning
Billings 1895 30 CFM per person 15 L/s per person Indoor air hygiene, preventing spread of disease
Flugge 1905 30 CFM per person 15 L/s per person Excessive temperature or unpleasant odor
ASHVE 1914 30 CFM per person 15 L/s per person Based on Billings, Flugge and contemporaries
Early US Codes 1925 30 CFM per person 15 L/s per person Same as above
Yaglou 1936 15 CFM per person 7.5 L/s per person Odor control, outdoor air as a fraction of total air
ASA 1946 15 CFM per person 7.5 L/s per person Based on Yahlou and contemporaries
ASHRAE 1975 15 CFM per person 7.5 L/s per person Same as above
ASHRAE 1981 10 CFM per person 5 L/s per person For non-smoking areas, reduced.
ASHRAE 1989 15 CFM per person 7.5 L/s per person Based on Fanger, W. Cain, and Janssen

ASHRAE continues to publish space-by-space ventilation rate recommendations, which are decided by a consensus committee of industry experts. The modern descendants of ASHRAE standard 62-1975 are ASHRAE Standard 62.1, for non-residential spaces, and ASHRAE 62.2 for residences.

In 2004, the calculation method was revised to include both an occupant-based contamination component and an area–based contamination component.[62] These two components are additive, to arrive at an overall ventilation rate. The change was made to recognize that densely populated areas were sometimes overventilated (leading to higher energy and cost) using a per-person methodology.

Occupant Based Ventilation Rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples
0 cfm/person 0 L/s/person Spaces where ventilation requirements are primarily associated with building elements, not occupants. Storage Rooms, Warehouses
5 cfm/person 2.5 L/s/person Spaces occupied by adults, engaged in low levels of activity Office space
7.5 cfm/person 3.5 L/s/person Spaces where occupants are engaged in higher levels of activity, but not strenuous, or activities generating more contaminants Retail spaces, lobbies
10 cfm/person 5 L/s/person Spaces where occupants are engaged in more strenuous activity, but not exercise, or activities generating more contaminants Classrooms, school settings
20 cfm/person 10 L/s/person Spaces where occupants are engaged in exercise, or activities generating many contaminants dance floors, exercise rooms

Area-based ventilation rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples
0.06 cfm/ft2 0.30 L/s/m2 Spaces where space contamination is normal, or similar to an office environment Conference rooms, lobbies
0.12 cfm/ft2 0.60 L/s/m2 Spaces where space contamination is significantly higher than an office environment Classrooms, museums
0.18 cfm/ft2 0.90 L/s/m2 Spaces where space contamination is even higher than the previous category Laboratories, art classrooms
0.30 cfm/ft2 1.5 L/s/m2 Specific spaces in sports or entertainment where contaminants are released Sports, entertainment
0.48 cfm/ft2 2.4 L/s/m2 Reserved for indoor swimming areas, where chemical concentrations are high Indoor swimming areas

The addition of occupant- and area-based ventilation rates found in the tables above often results in significantly reduced rates compared to the former standard. This is compensated in other sections of the standard which require that this minimum amount of air is delivered to the breathing zone of the individual occupant at all times. The total outdoor air intake of the ventilation system (in multiple-zone variable air volume (VAV) systems) might therefore be similar to the airflow required by the 1989 standard.
From 1999 to 2010, there was considerable development of the application protocol for ventilation rates. These advancements address occupant- and process-based ventilation rates, room ventilation effectiveness, and system ventilation effectiveness[63]

Problems

[edit]
  • In hot, humid climates, unconditioned ventilation air can daily deliver approximately 260 milliliters of water for each cubic meters per hour (m3/h) of outdoor air (or one pound of water each day for each cubic feet per minute of outdoor air per day), annual average.[citation needed] This is a great deal of moisture and can create serious indoor moisture and mold problems. For example, given a 150 m2 building with an airflow of 180 m3/h this could result in about 47 liters of water accumulated per day.
  • Ventilation efficiency is determined by design and layout, and is dependent upon the placement and proximity of diffusers and return air outlets. If they are located closely together, supply air may mix with stale air, decreasing the efficiency of the HVAC system, and creating air quality problems.
  • System imbalances occur when components of the HVAC system are improperly adjusted or installed and can create pressure differences (too much-circulating air creating a draft or too little circulating air creating stagnancy).
  • Cross-contamination occurs when pressure differences arise, forcing potentially contaminated air from one zone to an uncontaminated zone. This often involves undesired odors or VOCs.
  • Re-entry of exhaust air occurs when exhaust outlets and fresh air intakes are either too close, prevailing winds change exhaust patterns or infiltration between intake and exhaust air flows.
  • Entrainment of contaminated outdoor air through intake flows will result in indoor air contamination. There are a variety of contaminated air sources, ranging from industrial effluent to VOCs put off by nearby construction work.[64] A recent study revealed that in urban European buildings equipped with ventilation systems lacking outdoor air filtration, the exposure to outdoor-originating pollutants indoors resulted in more Disability-Adjusted Life Years (DALYs) than exposure to indoor-emitted pollutants.[65]

See also

[edit]
  • Architectural engineering
  • Biological safety
  • Cleanroom
  • Environmental tobacco smoke
  • Fume hood
  • Head-end power
  • Heating, ventilation, and air conditioning
  • Heat recovery ventilation
  • Mechanical engineering
  • Room air distribution
  • Sick building syndrome
  • Siheyuan
  • Solar chimney
  • Tulou
  • Windcatcher

References

[edit]
  1. ^ Malone, Alanna. "The Windcatcher House". Architectural Record: Building for Social Change. McGraw-Hill. Archived from the original on 22 April 2012.
  2. ^ ASHRAE (2021). "Ventilation and Infiltration". ASHRAE Handbook—Fundamentals. Peachtree Corners, GA: ASHRAE. ISBN 978-1-947192-90-4.
  3. ^ a b Whole-House Ventilation | Department of Energy
  4. ^ de Gids W.F., Jicha M., 2010. "Ventilation Information Paper 32: Hybrid Ventilation Archived 2015-11-17 at the Wayback Machine", Air Infiltration and Ventilation Centre (AIVC), 2010
  5. ^ Schiavon, Stefano (2014). "Adventitious ventilation: a new definition for an old mode?". Indoor Air. 24 (6): 557–558. Bibcode:2014InAir..24..557S. doi:10.1111/ina.12155. ISSN 1600-0668. PMID 25376521.
  6. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  7. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  8. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  9. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  10. ^ Belias, Evangelos; Licina, Dusan (2023). "Influence of outdoor air pollution on European residential ventilative cooling potential". Energy and Buildings. 289. Bibcode:2023EneBu.28913044B. doi:10.1016/j.enbuild.2023.113044.
  11. ^ a b Sun, Y., Zhang, Y., Bao, L., Fan, Z. and Sundell, J., 2011. Ventilation and dampness in dorms and their associations with allergy among college students in China: a case-control study. Indoor Air, 21(4), pp.277-283.
  12. ^ Kavanaugh, Steve. Infiltration and Ventilation In Residential Structures. February 2004
  13. ^ M.H. Sherman. "ASHRAE's First Residential Ventilation Standard" (PDF). Lawrence Berkeley National Laboratory. Archived from the original (PDF) on 29 February 2012.
  14. ^ a b ASHRAE Standard 62
  15. ^ How Natural Ventilation Works by Steven J. Hoff and Jay D. Harmon. Ames, IA: Department of Agricultural and Biosystems Engineering, Iowa State University, November 1994.
  16. ^ "Natural Ventilation – Whole Building Design Guide". Archived from the original on 21 July 2012.
  17. ^ Shaqe, Erlet. Sustainable Architectural Design.
  18. ^ "Natural Ventilation for Infection Control in Health-Care Settings" (PDF). World Health Organization (WHO), 2009. Retrieved 5 July 2021.
  19. ^ Escombe, A. R.; Oeser, C. C.; Gilman, R. H.; et al. (2007). "Natural ventilation for the prevention of airborne contagion". PLOS Med. 4 (68): e68. doi:10.1371/journal.pmed.0040068. PMC 1808096. PMID 17326709.
  20. ^ Centers For Disease Control and Prevention (CDC) "Improving Ventilation In Buildings". 11 February 2020.
  21. ^ Centers For Disease Control and Prevention (CDC) "Guidelines for Environmental Infection Control in Health-Care Facilities". 22 July 2019.
  22. ^ Dr. Edward A. Nardell Professor of Global Health and Social Medicine, Harvard Medical School "If We're Going to Live With COVID-19, It's Time to Clean Our Indoor Air Properly". Time. February 2022.
  23. ^ "A Paradigm Shift to Combat Indoor Respiratory Infection - 21st century" (PDF). University of Leeds., Morawska, L, Allen, J, Bahnfleth, W et al. (36 more authors) (2021) A paradigm shift to combat indoor respiratory infection. Science, 372 (6543). pp. 689-691. ISSN 0036-8075
  24. ^ Video "Building Ventilation What Everyone Should Know". YouTube. 17 June 2022.
  25. ^ Mudarri, David (January 2010). Public Health Consequences and Cost of Climate Change Impacts on Indoor Environments (PDF) (Report). The Indoor Environments Division, Office of Radiation and Indoor Air, U.S. Environmental Protection Agency. pp. 38–39, 63.
  26. ^ "Climate Change a Systems Perspective". Cassbeth.
  27. ^ Raatschen W. (ed.), 1990: "Demand Controlled Ventilation Systems: State of the Art Review Archived 2014-05-08 at the Wayback Machine", Swedish Council for Building Research, 1990
  28. ^ Mansson L.G., Svennberg S.A., Liddament M.W., 1997: "Technical Synthesis Report. A Summary of IEA Annex 18. Demand Controlled Ventilating Systems Archived 2016-03-04 at the Wayback Machine", UK, Air Infiltration and Ventilation Centre (AIVC), 1997
  29. ^ ASHRAE (2006). "Interpretation IC 62.1-2004-06 Of ANSI/ASHRAE Standard 62.1-2004 Ventilation For Acceptable Indoor Air Quality" (PDF). American Society of Heating, Refrigerating, and Air-Conditioning Engineers. p. 2. Archived from the original (PDF) on 12 August 2013. Retrieved 10 April 2013.
  30. ^ Fahlen P., Andersson H., Ruud S., 1992: "Demand Controlled Ventilation Systems: Sensor Tests Archived 2016-03-04 at the Wayback Machine", Swedish National Testing and Research Institute, Boras, 1992
  31. ^ Raatschen W., 1992: "Demand Controlled Ventilation Systems: Sensor Market Survey Archived 2016-03-04 at the Wayback Machine", Swedish Council for Building Research, 1992
  32. ^ Mansson L.G., Svennberg S.A., 1993: "Demand Controlled Ventilation Systems: Source Book Archived 2016-03-04 at the Wayback Machine", Swedish Council for Building Research, 1993
  33. ^ Lin X, Lau J & Grenville KY. (2012). "Evaluation of the Validity of the Assumptions Underlying CO2-Based Demand-Controlled Ventilation by a Literature review" (PDF). ASHRAE Transactions NY-14-007 (RP-1547). Archived from the original (PDF) on 14 July 2014. Retrieved 10 July 2014.
  34. ^ ASHRAE (2010). "ANSI/ASHRAE Standard 90.1-2010: Energy Standard for Buildings Except for Low-Rise Residential Buildings". American Society of Heating Ventilation and Air Conditioning Engineers, Atlanta, GA.
  35. ^ a b "Ventilation. - 1926.57". Osha.gov. Archived from the original on 2 December 2012. Retrieved 10 November 2012.
  36. ^ Air Infiltration and Ventilation Centre (AIVC). "What is smart ventilation?", AIVC, 2018
  37. ^ "Home". Wapa.gov. Archived from the original on 26 July 2011. Retrieved 10 November 2012.
  38. ^ ASHRAE, Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, 2002.
  39. ^ "Stone Pages Archaeo News: Neolithic Vinca was a metallurgical culture". www.stonepages.com. Archived from the original on 30 December 2016. Retrieved 11 August 2016.
  40. ^ a b Porter, Dale H. (1998). The Life and Times of Sir Goldsworthy Gurney: Gentleman scientist and inventor, 1793–1875. Associated University Presses, Inc. pp. 177–79. ISBN 0-934223-50-5.
  41. ^ "The Towers of Parliament". www.parliament.UK. Archived from the original on 17 January 2012.
  42. ^ Alfred Barry (1867). "The life and works of Sir Charles Barry, R.A., F.R.S., &c. &c". Retrieved 29 December 2011.
  43. ^ a b Robert Bruegmann. "Central Heating and Ventilation: Origins and Effects on Architectural Design" (PDF).
  44. ^ Russell, Colin A; Hudson, John (2011). Early Railway Chemistry and Its Legacy. Royal Society of Chemistry. p. 67. ISBN 978-1-84973-326-7. Retrieved 29 December 2011.
  45. ^ Milne, Lynn. "McWilliam, James Ormiston". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/17747. (Subscription or UK public library membership required.)
  46. ^ Philip D. Curtin (1973). The image of Africa: British ideas and action, 1780–1850. Vol. 2. University of Wisconsin Press. p. 350. ISBN 978-0-299-83026-7. Retrieved 29 December 2011.
  47. ^ "William Loney RN – Background". Peter Davis. Archived from the original on 6 January 2012. Retrieved 7 January 2012.
  48. ^ Sturrock, Neil; Lawsdon-Smith, Peter (10 June 2009). "David Boswell Reid's Ventilation of St. George's Hall, Liverpool". The Victorian Web. Archived from the original on 3 December 2011. Retrieved 7 January 2012.
  49. ^ Lee, Sidney, ed. (1896). "Reid, David Boswell" . Dictionary of National Biography. Vol. 47. London: Smith, Elder & Co.
  50. ^ Great Britain: Parliament: House of Lords: Science and Technology Committee (15 July 2005). Energy Efficiency: 2nd Report of Session 2005–06. The Stationery Office. p. 224. ISBN 978-0-10-400724-2. Retrieved 29 December 2011.
  51. ^ a b c Janssen, John (September 1999). "The History of Ventilation and Temperature Control" (PDF). ASHRAE Journal. American Society of Heating Refrigeration and Air Conditioning Engineers, Atlanta, GA. Archived (PDF) from the original on 14 July 2014. Retrieved 11 June 2014.
  52. ^ Tredgold, T. 1836. "The Principles of Warming and Ventilation – Public Buildings". London: M. Taylor
  53. ^ Billings, J.S. 1886. "The principles of ventilation and heating and their practical application 2d ed., with corrections" Archived copy. OL 22096429M.
  54. ^ "Immediately Dangerous to Life or Health Concentrations (IDLH): Carbon dioxide – NIOSH Publications and Products". CDC. May 1994. Archived from the original on 20 April 2018. Retrieved 30 April 2018.
  55. ^ Lemberg WH, Brandt AD, and Morse, K. 1935. "A laboratory study of minimum ventilation requirements: ventilation box experiments". ASHVE Transactions, V. 41
  56. ^ Yaglou CPE, Riley C, and Coggins DI. 1936. "Ventilation Requirements" ASHVE Transactions, v.32
  57. ^ Tiller, T.R. 1973. ASHRAE Transactions, v. 79
  58. ^ Berg-Munch B, Clausen P, Fanger PO. 1984. "Ventilation requirements for the control of body odor in spaces occupied by women". Proceedings of the 3rd Int. Conference on Indoor Air Quality, Stockholm, Sweden, V5
  59. ^ Joshi, SM (2008). "The sick building syndrome". Indian J Occup Environ Med. 12 (2): 61–64. doi:10.4103/0019-5278.43262. PMC 2796751. PMID 20040980. in section 3 "Inadequate ventilation"
  60. ^ "Standard 62.1-2004: Stricter or Not?" ASHRAE IAQ Applications, Spring 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  61. ^ Apte, Michael G. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994–1996 BASE study data." Indoor Air, Dec 2000: 246–58.
  62. ^ a b c Stanke D. 2006. "Explaining Science Behind Standard 62.1-2004". ASHRAE IAQ Applications, V7, Summer 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  63. ^ Stanke, DA. 2007. "Standard 62.1-2004: Stricter or Not?" ASHRAE IAQ Applications, Spring 2006. "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2014. Retrieved 12 June 2014.cite web: CS1 maint: archived copy as title (link) accessed 11 June 2014
  64. ^ US EPA. Section 2: Factors Affecting Indoor Air Quality. "Archived copy" (PDF). Archived (PDF) from the original on 24 October 2008. Retrieved 30 April 2009.cite web: CS1 maint: archived copy as title (link)
  65. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
[edit]

Air Infiltration & Ventilation Centre (AIVC)

[edit]
  • Publications from the Air Infiltration & Ventilation Centre (AIVC)

International Energy Agency (IEA) Energy in Buildings and Communities Programme (EBC)

[edit]
  • Publications from the International Energy Agency (IEA) Energy in Buildings and Communities Programme (EBC) ventilation-related research projects-annexes:
    • EBC Annex 9 Minimum Ventilation Rates
    • EBC Annex 18 Demand Controlled Ventilation Systems
    • EBC Annex 26 Energy Efficient Ventilation of Large Enclosures
    • EBC Annex 27 Evaluation and Demonstration of Domestic Ventilation Systems
    • EBC Annex 35 Control Strategies for Hybrid Ventilation in New and Retrofitted Office Buildings (HYBVENT)
    • EBC Annex 62 Ventilative Cooling

International Society of Indoor Air Quality and Climate

[edit]
  • Indoor Air Journal
  • Indoor Air Conference Proceedings

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

[edit]
  • ASHRAE Standard 62.1 – Ventilation for Acceptable Indoor Air Quality
  • ASHRAE Standard 62.2 – Ventilation for Acceptable Indoor Air Quality in Residential Buildings

 

Photo
Photo
Photo
Photo
Photo
Photo

Driving Directions in Tulsa County


Driving Directions From Tulsa VA Behavioral Medicine Clinic to Durham Supply Inc
Driving Directions From Country Inn & Suites by Radisson, Tulsa, OK to Durham Supply Inc
Driving Directions From OYO Hotel Tulsa International Airport to Durham Supply Inc
Driving Directions From Lincoln Christian School to Durham Supply Inc
Driving Directions From Brookhaven Hospitales to Durham Supply Inc
Driving Directions From Tuff Shed Tulsa to Durham Supply Inc
Driving Directions From Tulsa Zoo to Durham Supply Inc
Driving Directions From OkieTundra to Durham Supply Inc
Driving Directions From OkieTundra to Durham Supply Inc
Driving Directions From Tulsa Botanic Garden to Durham Supply Inc
Driving Directions From Golden Driller Statue to Durham Supply Inc
Driving Directions From The Cave House to Durham Supply Inc

Reviews for Durham Supply Inc


Durham Supply Inc

B Mann

(5)

I was in need of some items for a double wide that I am remodeling and this place is the only place in town that had what I needed ( I didn't even try the other rude place )while I was there I learned the other place that was in Tulsa that also sold mobile home supplies went out of business (no wonder the last time I was in there they were VERY RUDE and high priced) I like the way Dunham does business they answered all my questions and got me the supplies I needed, very friendly, I will be back to purchase the rest of my items when the time comes.

Durham Supply Inc

Gerald Clifford Brewster

(5)

We will see, the storm door I bought says on the tag it's 36x80, but it's 34x80. If they return it.......they had no problems returning it. And it was no fault of there's, you measure a mobile home door different than a standard door!

Durham Supply Inc

Ethel Schiller

(5)

This place is really neat, if they don't have it they can order it from another of their stores and have it there overnight in most cases. Even hard to find items for a trailer! I definitely recommend this place to everyone! O and the prices is awesome too!

Durham Supply Inc

Dennis Champion

(5)

Durham supply and Royal supply seems to find the most helpful and friendly people to work in their stores, we are based out of Kansas City out here for a few remodels and these guys treated us like we've gone there for years.

Durham Supply Inc

Ty Spears

(5)

Bought a door/storm door combo. Turns out it was the wrong size. They swapped it out, quick and easy no problems. Very helpful in explaining the size differences from standard door sizes.

View GBP

Frequently Asked Questions

The key considerations include compatibility with the voltage and current ratings, alignment with the type of HVAC system (e.g., heat pump, furnace), ensuring that there are enough wires for new features or functions, verifying that wire gauges are appropriate for the load, and checking whether additional adapters or modules are needed.
Start by identifying your current setup—check the number of wires and their labels (common labels include R, G, Y, W, C). Compare this to the requirements of the smart thermostat. Many newer models require a C-wire for continuous power; if absent, you might need an adapter or professional installation.
If your system uses outdated wiring standards (like two-wire systems), consider upgrading to accommodate newer technologies. Consult an HVAC technician to rewire as necessary or use conversion kits designed for specific thermostats to adapt older systems without extensive rewiring.
Yes, non-programmable thermostats often require fewer wires and may be more suitable where complex wiring isnt feasible. However, some smart thermostats offer compatibility modes for fewer wire systems or come with accessories to simplify integration with existing setups.
Yes, mismatched wiring can lead to malfunctioning controls or even damage both the control unit and HVAC system. Always ensure compatibility before installation; otherwise, hire a professional who can assess and make necessary adjustments safely.