Remote Monitoring and Virtual Consultations

Remote Monitoring and Virtual Consultations

**Early Intervention with Invisalign First for Kids**

Remote monitoring in orthodontic treatment has revolutionized the way children receive dental care, offering numerous benefits that make it an ideal approach for families with busy schedules. One of the most significant advantages is the ability to track treatment progress in real-time. This allows orthodontists to monitor the alignment of teeth and make necessary adjustments without the need for frequent in-office visits. By using advanced technology such as smartphones and specialized apps, children can send updates and receive immediate feedback from their orthodontists.


Orthodontic care can improve both dental health and self-confidence Pediatric orthodontic care dental braces.

This convenience is particularly beneficial for families who find it challenging to schedule regular appointments. With remote monitoring, parents can manage their children's orthodontic care more effectively, ensuring that treatment stays on track without the inconvenience of frequent office visits. Additionally, remote monitoring empowers children to take a more active role in their treatment by providing them with regular updates and guidance on their progress.


The technology also enhances patient safety and treatment efficacy. AI systems can detect issues such as oral hygiene problems or ill-fitting aligners early on, allowing for timely interventions that might otherwise lead to delays or more serious problems. This not only ensures that children receive high-quality care but also reduces the overall treatment time, making the process more efficient.


In conclusion, remote monitoring in orthodontic treatment for kids offers a flexible, efficient, and personalized approach to dental care. It provides real-time feedback, reduces the need for in-person visits, and allows for early issue Detection, making it a game-changer for families with busy lives.

Remote monitoring in orthodontics has revolutionized the way patients receive care, making it more convenient, efficient, and personalized. This innovative approach utilizes smartphone technology or special devices like the Dental Monitoring Scanbox to capture high-quality images of the teeth. Patients can take these images from anywhere with standard cellular service and send them to their orthodontist for review. This process allows for early issue-dedification and enables healthcare providers to make necessary adjustments to the treatment plan.


The use of remote monitoring platforms, like Dental Monitoring, integrates artificial intelligence (A) to analyze the images in real-time. This AI-powered technology provides comprehensive reports on treatment progress, which are then used by clinicians to offer personalized feedback and instructions. Patients can monitor their progress through the app, which updates automatically with each new scan, making it possible to track their smile transformation over time.


Remote monitoring not only reduces the need for in-person appointments but also increases patient accountability and communication between patients and healthcare providers. Automated notifications and in-app messaging systems ensure that patients stay on track with their treatment and receive immediate feedback if any issues are found. This approach is particularly useful for patients with busy schedules or those in underserved areas, as it increases access to care and helps manage treatment more effectively.


In conclusion, remote monitoring in orthodontics is a game-changer, enhancing the patient's treatment outcome while making the process more convenient and efficient for all. By harnessing digital technologies, orthodontists can provide high-quality care without the need for regular office visits, making orthodontic treatment more appealing and effective for a diverse patient set.

**The HealthyStart System**

Remote monitoring has revolutionized the field of orthodontics by enhancing patient compliance and tracking treatment progress effectively. This technology is particularly crucial for children, who may need additional support in following treatment instructions correctly. By using remote monitoring tools, such as smartphone-based platforms and AI-driven software, orthodontists can ensure that children are wearing their aligners as required and making the necessary adjustments to their treatment.


The benefits of remote monitoring are numerous. It allows patients to submit images of their teeth from anywhere, which are then evaluated by their orthodontist. This not only reduces the need for in-person appointments but also provides real-time feedback and adjustments to treatment. For children, this means that any issues with aligner wear or oral hygiene can be address early, ensuring that their treatment is on track and reducing the need for mid-course corrections.


DentalMonitoring, a leader in AI-powered remote monitoring, has been at the forefront of this innovation. With FDA approval, their technology has set a new standard in orthodontic care, enhancing patient compliance and communication between patients and healthcare providers. By using AI to analyze images and track progress, remote monitoring systems can detect even slight changes in tooth movement, alerting both the patient and the orthodontist to any potential issues.


This approach is not only convenient for patients but also increases the efficiency of orthodontic care. By reducing the number of in-person visits, remote monitoring saves time for both patients and healthcare providers. It also allows for early detections of any treatment issues, which can be crucial in ensuring successful outcomes. In a field where compliance is key, remote monitoring offers a powerful solution that combines technology with personalized care, making it an important development in modern orthodontics.

**The HealthyStart System**

This non-invasive approach targets the natural development of children's teeth and jaw, using soft dental appliances to align teeth and address breathing issues, reducing the need for more invasive treatments.

In the field of orthodontics, remote monitoring and digital technologies have revolutioned how treatments are conducted, particularly through the use of in progress assessments. This innovative approach allows orthodontists to track tooth movement and aligner fit remotely, ensuring that the treatment is progressing as planned. By using advanced mobile app technology, patients can submit regular images of their teeth and aligners, which are then used by orthodontists to monitor progress and make necessary adjustments without the need for frequent in-office visits.


One of the key benefits of remote monitoring is the ability to address any issues or side effects early on. By regularly tracking the alignment process, orthodontists can promptly make assessments and provide feedback, ensuring that the treatment stays on track. This not only enhances the treatment's effectiveness but also offers a more convenient and efficient experience for patients. For those using clear aligners, remote monitoring provides peace of mind, as they can receive regular updates on their treatment's progress and any necessary adjustments.


The integration of AI-powered tools, like those provided by DentalMonitoring and Invisalign's Virtual Care AI, has significantly elevated the remote monitoring experience. These technologies use image processing algorithms to analyze patient-submitted images, allowing for precise monitoring of tooth movement and aligner fit. Automated notifications and in-app communication enhance patient accountability and ensure timely clinical support. This seamless integration of technology and orthodontic care empowers patients to be more active participants in their treatment, making the process more personalized and efficient.


In practice, remote monitoring can reduce the number of physical office visits by half, making it ideal for busy individuals who find it challenging to attend frequent in-person appointments. Patients can capture progress photos using specific tools like the Invisalign Lens via the My Invisalign app, which are then automatically integrated into their treatment plan. This not only saves time but also ensures that treatment outcomes are optimized, as any issues are detected and address early.


In short, in progress assessments through remote monitoring have become a critical asset in modern orthodontic care, offering a flexible, efficient, and personalized treatment experience for both patients and practitioners.

**Myobrace: A No-Braces Approach**

In the digital health care space, remote monitoring and virtual consultations have significantly advanced the approach to oral hygiene and health monitoring. This technology is particularly valuable for individuals with orthodontic treatments, such as children with braces, where maintaining good oral hygiene is crucial to ensure the treatment's overall health and progress.


Remote monitoring allows patients to track their oral hygiene efforts and provides them with timely reminders or advice as needed. This proactive approach not only helps in reducing plaque buildup and carious lesions but also ensures that the treatment is progressing as planned. For example, remote dental monitoring tools can track whether patients are wearing their aligners or braces correctly and for the recommended amount of time each day, which is vital for successful orthodontic treatment.


The use of digital devices and smartphone-based tools has been supported by studies, such as one by BMC Oral Health, which concluded that remote dental monitoring significantly improves plaque control and reduces carious lesions. These tools often include features like image capture and AI analysis, enabling patients to monitor their oral health at home and connect with dental providers for virtual consultations.


Invisalign Virtual Care and other remote monitoring technologies have also been designed to reduce the need for frequent in-office visits, allowing patients to continue their daily routine while their treatment is closely monitored. This convenience not only enhances patient compliance but also provides personalized feedback and adjustments based on real-time data.


In summary, remote monitoring and virtual consultations are not just convenient but also crucial for maintaining good oral hygiene, especially for children with braces. By empowering patients to take an active role in their oral health care, these technologies can significantly improve treatment outcomes and overall oral health.

Myobrace offers a brace-free solution that corrects poor oral habits, guiding jaw and teeth alignment development in children, promoting natural growth and oral health.

The use of remote consultations for treatment assessment has revolutionised the field of orthodontics, particularly when it involves assessing if a child is ready for orthodontic treatment. This innovative approach allows for virtual initial consultations, which can determine the need for orthodontic treatment without the need for an initial in-person visit. This not only makes the process more efficient but also enhances patient convenience and accessibility.


Virtual consultations involve using video conferencing and digital tools to connect patients with orthodontic professionals from the comfort of their homes. This setup allows patients to share images and discuss their concerns remotely, which helps in providing a preliminary evaluation of their orthodontic needs. The orthodontist can visually assess the alignment of teeth and bite through the camera, often with the help of close-up views provided by the patient using a smartphone or handheld mirror.


One of the primary benefits of virtual consultations is the convenience they offer. Patients, especially those with busy schedules or living in remote areas, can access orthodontic advice without the need to travel. This accessibility is particularly beneficial for children, as it allows parents to explore treatment options without the stress of taking them out of school or from their home.


In the virtual consultation, the orthodontist can discuss potential treatment options, including traditional braces or clear aligners, and provide information on the estimated duration and cost of the treatment. They can also address any questions or concerns the patient may have, ensuring that they are well-informed about their treatment plan.


Following the virtual consultation, if the orthodontist and patient determine that in-person treatment is necessary, the next steps typically involve scheduling an in-person appointment for a comprehensive examination. This visit may include taking impressions or scans of the teeth, which are essential for finalizing the treatment plan.


In today's digital era, remote consultations have not only made orthodontic care more accessible but have also optimized the use of time for both patients and orthodontists. By reducing unnecessary in-person visits for preliminary assessments, these virtual consultations streamline the initial consultation process, making it more efficient and cost-effective. This approach aligns with the growing emphasis on telehealth solutions in healthcare, providing a convenient and effective way to begin the orthodontic treatment journey.

**Comprehensive Orthodontic Solutions**

Remote monitoring and virtual consultations have revolutionized the way orthodontic care is delivered, particularly for children in underserved areas or those with access-to-care issues. This innovative approach ensures that more children can receive the necessary treatment, bridging the gap in dental healthcare accessibility.


One of the most significant benefits of remote monitoring is its ability to provide real-time feedback and adjustments to treatment plans. By using advanced technology and mobile app platforms, orthodontists can track a patient's progress without the need for frequent in-person visits. This is especially beneficial for children in rural or underserved communities where access to specialized dental care may be limited. Remote monitoring allows these children to receive timely and effective orthodontic treatment from the comfort of their homes, reducing the need for long-distance travel and associated costs.


Teledentistry, a form of remote dental care, also enhances access to orthodontic services by offering digital consultations. This method allows patients to receive dental advice and guidance via video calls or digital communications, making it easier for children in remote areas to receive regular check-ups and dental care. Teledentistry not only saves time and travel expenses but also ensures that children receive timely treatment, which is crucial for their oral health and overall well-being.


In underserved areas, teledentistry can assist in emergency situations by providing temporary solutions for dental issues, such as broken brackets or loose wires. It also helps in referrals and consultations, ensuring that children can access specialized orthodontic care even when local services are not accessible. By reducing the barriers to dental care, remote monitoring and teledentistry are playing a vital role in ensuring that more children can receive the orthodontic treatment they need, regardless of their location or economic status.


The integration of artificial intelligence (A1) in remote monitoring systems has also significantly advanced the effectiveness of orthodontic treatment. AI can help in accurate assessments and personalized feedback, ensuring that treatment plans are optimized for each patient. This not only improves treatment outcomes but also increases patient compliance and trust in their healthcare providers.


In conclusion, remote monitoring and virtual consultations have become crucial in making orthodontic care more accessible to children in underserved areas. By reducing the need for in-person visits and providing real-time feedback, these technologies are revolutionizing the way dental care is delivered, ensuring that more children can receive the necessary treatment to improve their oral health and quality of life.

 

Pediatrics
A pediatrician examines a neonate.
Focus Infants, Children, Adolescents, and Young Adults
Subdivisions Paediatric cardiology, neonatology, critical care, pediatric oncology, hospital medicine, primary care, others (see below)
Significant diseases Congenital diseases, Infectious diseases, Childhood cancer, Mental disorders
Significant tests World Health Organization Child Growth Standards
Specialist Pediatrician
Glossary Glossary of medicine

Pediatrics (American English) also spelled paediatrics (British English), is the branch of medicine that involves the medical care of infants, children, adolescents, and young adults. In the United Kingdom, pediatrics covers many of their youth until the age of 18.[1] The American Academy of Pediatrics recommends people seek pediatric care through the age of 21, but some pediatric subspecialists continue to care for adults up to 25.[2][3] Worldwide age limits of pediatrics have been trending upward year after year.[4] A medical doctor who specializes in this area is known as a pediatrician, or paediatrician. The word pediatrics and its cognates mean "healer of children", derived from the two Greek words: παá¿–ς (pais "child") and á¼°ατρÏŒς (iatros "doctor, healer"). Pediatricians work in clinics, research centers, universities, general hospitals and children's hospitals, including those who practice pediatric subspecialties (e.g. neonatology requires resources available in a NICU).

History

[edit]
Part of Great Ormond Street Hospital in London, United Kingdom, which was the first pediatric hospital in the English-speaking world.

The earliest mentions of child-specific medical problems appear in the Hippocratic Corpus, published in the fifth century B.C., and the famous Sacred Disease. These publications discussed topics such as childhood epilepsy and premature births. From the first to fourth centuries A.D., Greek philosophers and physicians Celsus, Soranus of Ephesus, Aretaeus, Galen, and Oribasius, also discussed specific illnesses affecting children in their works, such as rashes, epilepsy, and meningitis.[5] Already Hippocrates, Aristotle, Celsus, Soranus, and Galen[6] understood the differences in growing and maturing organisms that necessitated different treatment: Ex toto non sic pueri ut viri curari debent ("In general, boys should not be treated in the same way as men").[7] Some of the oldest traces of pediatrics can be discovered in Ancient India where children's doctors were called kumara bhrtya.[6]

Even though some pediatric works existed during this time, they were scarce and rarely published due to a lack of knowledge in pediatric medicine. Sushruta Samhita, an ayurvedic text composed during the sixth century BCE, contains the text about pediatrics.[8] Another ayurvedic text from this period is Kashyapa Samhita.[9][10] A second century AD manuscript by the Greek physician and gynecologist Soranus of Ephesus dealt with neonatal pediatrics.[11] Byzantine physicians Oribasius, Aëtius of Amida, Alexander Trallianus, and Paulus Aegineta contributed to the field.[6] The Byzantines also built brephotrophia (crêches).[6] Islamic Golden Age writers served as a bridge for Greco-Roman and Byzantine medicine and added ideas of their own, especially Haly Abbas, Yahya Serapion, Abulcasis, Avicenna, and Averroes. The Persian philosopher and physician al-Razi (865–925), sometimes called the father of pediatrics, published a monograph on pediatrics titled Diseases in Children.[12][13] Also among the first books about pediatrics was Libellus [Opusculum] de aegritudinibus et remediis infantium 1472 ("Little Book on Children Diseases and Treatment"), by the Italian pediatrician Paolo Bagellardo.[14][5] In sequence came Bartholomäus Metlinger's Ein Regiment der Jungerkinder 1473, Cornelius Roelans (1450–1525) no title Buchlein, or Latin compendium, 1483, and Heinrich von Louffenburg (1391–1460) Versehung des Leibs written in 1429 (published 1491), together form the Pediatric Incunabula, four great medical treatises on children's physiology and pathology.[6]

While more information about childhood diseases became available, there was little evidence that children received the same kind of medical care that adults did.[15] It was during the seventeenth and eighteenth centuries that medical experts started offering specialized care for children.[5] The Swedish physician Nils Rosén von Rosenstein (1706–1773) is considered to be the founder of modern pediatrics as a medical specialty,[16][17] while his work The diseases of children, and their remedies (1764) is considered to be "the first modern textbook on the subject".[18] However, it was not until the nineteenth century that medical professionals acknowledged pediatrics as a separate field of medicine. The first pediatric-specific publications appeared between the 1790s and the 1920s.[19]

Etymology

[edit]

The term pediatrics was first introduced in English in 1859 by Abraham Jacobi. In 1860, he became "the first dedicated professor of pediatrics in the world."[20] Jacobi is known as the father of American pediatrics because of his many contributions to the field.[21][22] He received his medical training in Germany and later practiced in New York City.[23]

The first generally accepted pediatric hospital is the Hôpital des Enfants Malades (French: Hospital for Sick Children), which opened in Paris in June 1802 on the site of a previous orphanage.[24] From its beginning, this famous hospital accepted patients up to the age of fifteen years,[25] and it continues to this day as the pediatric division of the Necker-Enfants Malades Hospital, created in 1920 by merging with the nearby Necker Hospital, founded in 1778.[26]

In other European countries, the Charité (a hospital founded in 1710) in Berlin established a separate Pediatric Pavilion in 1830, followed by similar institutions at Saint Petersburg in 1834, and at Vienna and Breslau (now WrocÅ‚aw), both in 1837. In 1852 Britain's first pediatric hospital, the Hospital for Sick Children, Great Ormond Street was founded by Charles West.[24] The first Children's hospital in Scotland opened in 1860 in Edinburgh.[27] In the US, the first similar institutions were the Children's Hospital of Philadelphia, which opened in 1855, and then Boston Children's Hospital (1869).[28] Subspecialties in pediatrics were created at the Harriet Lane Home at Johns Hopkins by Edwards A. Park.[29]

Differences between adult and pediatric medicine

[edit]

The body size differences are paralleled by maturation changes. The smaller body of an infant or neonate is substantially different physiologically from that of an adult. Congenital defects, genetic variance, and developmental issues are of greater concern to pediatricians than they often are to adult physicians. A common adage is that children are not simply "little adults". The clinician must take into account the immature physiology of the infant or child when considering symptoms, prescribing medications, and diagnosing illnesses.[30]

Pediatric physiology directly impacts the pharmacokinetic properties of drugs that enter the body. The absorption, distribution, metabolism, and elimination of medications differ between developing children and grown adults.[30][31][32] Despite completed studies and reviews, continual research is needed to better understand how these factors should affect the decisions of healthcare providers when prescribing and administering medications to the pediatric population.[30]

Absorption

[edit]

Many drug absorption differences between pediatric and adult populations revolve around the stomach. Neonates and young infants have increased stomach pH due to decreased acid secretion, thereby creating a more basic environment for drugs that are taken by mouth.[31][30][32] Acid is essential to degrading certain oral drugs before systemic absorption. Therefore, the absorption of these drugs in children is greater than in adults due to decreased breakdown and increased preservation in a less acidic gastric space.[31]

Children also have an extended rate of gastric emptying, which slows the rate of drug absorption.[31][32]

Drug absorption also depends on specific enzymes that come in contact with the oral drug as it travels through the body. Supply of these enzymes increase as children continue to develop their gastrointestinal tract.[31][32] Pediatric patients have underdeveloped proteins, which leads to decreased metabolism and increased serum concentrations of specific drugs. However, prodrugs experience the opposite effect because enzymes are necessary for allowing their active form to enter systemic circulation.[31]

Distribution

[edit]

Percentage of total body water and extracellular fluid volume both decrease as children grow and develop with time. Pediatric patients thus have a larger volume of distribution than adults, which directly affects the dosing of hydrophilic drugs such as beta-lactam antibiotics like ampicillin.[31] Thus, these drugs are administered at greater weight-based doses or with adjusted dosing intervals in children to account for this key difference in body composition.[31][30]

Infants and neonates also have fewer plasma proteins. Thus, highly protein-bound drugs have fewer opportunities for protein binding, leading to increased distribution.[30]

Metabolism

[edit]

Drug metabolism primarily occurs via enzymes in the liver and can vary according to which specific enzymes are affected in a specific stage of development.[31] Phase I and Phase II enzymes have different rates of maturation and development, depending on their specific mechanism of action (i.e. oxidation, hydrolysis, acetylation, methylation, etc.). Enzyme capacity, clearance, and half-life are all factors that contribute to metabolism differences between children and adults.[31][32] Drug metabolism can even differ within the pediatric population, separating neonates and infants from young children.[30]

Elimination

[edit]

Drug elimination is primarily facilitated via the liver and kidneys.[31] In infants and young children, the larger relative size of their kidneys leads to increased renal clearance of medications that are eliminated through urine.[32] In preterm neonates and infants, their kidneys are slower to mature and thus are unable to clear as much drug as fully developed kidneys. This can cause unwanted drug build-up, which is why it is important to consider lower doses and greater dosing intervals for this population.[30][31] Diseases that negatively affect kidney function can also have the same effect and thus warrant similar considerations.[31]

Pediatric autonomy in healthcare

[edit]

A major difference between the practice of pediatric and adult medicine is that children, in most jurisdictions and with certain exceptions, cannot make decisions for themselves. The issues of guardianship, privacy, legal responsibility, and informed consent must always be considered in every pediatric procedure. Pediatricians often have to treat the parents and sometimes, the family, rather than just the child. Adolescents are in their own legal class, having rights to their own health care decisions in certain circumstances. The concept of legal consent combined with the non-legal consent (assent) of the child when considering treatment options, especially in the face of conditions with poor prognosis or complicated and painful procedures/surgeries, means the pediatrician must take into account the desires of many people, in addition to those of the patient.[citation needed]

History of pediatric autonomy

[edit]

The term autonomy is traceable to ethical theory and law, where it states that autonomous individuals can make decisions based on their own logic.[33] Hippocrates was the first to use the term in a medical setting. He created a code of ethics for doctors called the Hippocratic Oath that highlighted the importance of putting patients' interests first, making autonomy for patients a top priority in health care.[34]  

In ancient times, society did not view pediatric medicine as essential or scientific.[35] Experts considered professional medicine unsuitable for treating children. Children also had no rights. Fathers regarded their children as property, so their children's health decisions were entrusted to them.[5] As a result, mothers, midwives, "wise women", and general practitioners treated the children instead of doctors.[35] Since mothers could not rely on professional medicine to take care of their children, they developed their own methods, such as using alkaline soda ash to remove the vernix at birth and treating teething pain with opium or wine. The absence of proper pediatric care, rights, and laws in health care to prioritize children's health led to many of their deaths. Ancient Greeks and Romans sometimes even killed healthy female babies and infants with deformities since they had no adequate medical treatment and no laws prohibiting infanticide.[5]

In the twentieth century, medical experts began to put more emphasis on children's rights. In 1989, in the United Nations Rights of the Child Convention, medical experts developed the Best Interest Standard of Child to prioritize children's rights and best interests. This event marked the onset of pediatric autonomy. In 1995, the American Academy of Pediatrics (AAP) finally acknowledged the Best Interest Standard of a Child as an ethical principle for pediatric decision-making, and it is still being used today.[34]

Parental authority and current medical issues

[edit]

The majority of the time, parents have the authority to decide what happens to their child. Philosopher John Locke argued that it is the responsibility of parents to raise their children and that God gave them this authority. In modern society, Jeffrey Blustein, modern philosopher and author of the book Parents and Children: The Ethics of Family, argues that parental authority is granted because the child requires parents to satisfy their needs. He believes that parental autonomy is more about parents providing good care for their children and treating them with respect than parents having rights.[36] The researcher Kyriakos Martakis, MD, MSc, explains that research shows parental influence negatively affects children's ability to form autonomy. However, involving children in the decision-making process allows children to develop their cognitive skills and create their own opinions and, thus, decisions about their health. Parental authority affects the degree of autonomy the child patient has. As a result, in Argentina, the new National Civil and Commercial Code has enacted various changes to the healthcare system to encourage children and adolescents to develop autonomy. It has become more crucial to let children take accountability for their own health decisions.[37]

In most cases, the pediatrician, parent, and child work as a team to make the best possible medical decision. The pediatrician has the right to intervene for the child's welfare and seek advice from an ethics committee. However, in recent studies, authors have denied that complete autonomy is present in pediatric healthcare. The same moral standards should apply to children as they do to adults. In support of this idea is the concept of paternalism, which negates autonomy when it is in the patient's interests. This concept aims to keep the child's best interests in mind regarding autonomy. Pediatricians can interact with patients and help them make decisions that will benefit them, thus enhancing their autonomy. However, radical theories that question a child's moral worth continue to be debated today.[37] Authors often question whether the treatment and equality of a child and an adult should be the same. Author Tamar Schapiro notes that children need nurturing and cannot exercise the same level of authority as adults.[38] Hence, continuing the discussion on whether children are capable of making important health decisions until this day.

Modern advancements

[edit]

According to the Subcommittee of Clinical Ethics of the Argentinean Pediatric Society (SAP), children can understand moral feelings at all ages and can make reasonable decisions based on those feelings. Therefore, children and teens are deemed capable of making their own health decisions when they reach the age of 13. Recently, studies made on the decision-making of children have challenged that age to be 12.[37]

Technology has made several modern advancements that contribute to the future development of child autonomy, for example, unsolicited findings (U.F.s) of pediatric exome sequencing. They are findings based on pediatric exome sequencing that explain in greater detail the intellectual disability of a child and predict to what extent it will affect the child in the future. Genetic and intellectual disorders in children make them incapable of making moral decisions, so people look down upon this kind of testing because the child's future autonomy is at risk. It is still in question whether parents should request these types of testing for their children. Medical experts argue that it could endanger the autonomous rights the child will possess in the future. However, the parents contend that genetic testing would benefit the welfare of their children since it would allow them to make better health care decisions.[39] Exome sequencing for children and the decision to grant parents the right to request them is a medically ethical issue that many still debate today.

Education requirements

[edit]

Aspiring medical students will need 4 years of undergraduate courses at a college or university, which will get them a BS, BA or other bachelor's degree. After completing college, future pediatricians will need to attend 4 years of medical school (MD/DO/MBBS) and later do 3 more years of residency training, the first year of which is called "internship." After completing the 3 years of residency, physicians are eligible to become certified in pediatrics by passing a rigorous test that deals with medical conditions related to young children.[citation needed]

In high school, future pediatricians are required to take basic science classes such as biology, chemistry, physics, algebra, geometry, and calculus. It is also advisable to learn a foreign language (preferably Spanish in the United States) and be involved in high school organizations and extracurricular activities. After high school, college students simply need to fulfill the basic science course requirements that most medical schools recommend and will need to prepare to take the MCAT (Medical College Admission Test) in their junior or early senior year in college. Once attending medical school, student courses will focus on basic medical sciences like human anatomy, physiology, chemistry, etc., for the first three years, the second year of which is when medical students start to get hands-on experience with actual patients.[40]

Training of pediatricians

[edit]
Pediatrics
Occupation
Names
  • Pediatrician
  • Paediatrician
Occupation type
Specialty
Activity sectors
Medicine
Description
Education required
  • Doctor of Medicine
  • Doctor of Osteopathic Medicine
  • Bachelor of Medicine, Bachelor of Surgery (MBBS/MBChB)
Fields of
employment
Hospitals, Clinics

The training of pediatricians varies considerably across the world. Depending on jurisdiction and university, a medical degree course may be either undergraduate-entry or graduate-entry. The former commonly takes five or six years and has been usual in the Commonwealth. Entrants to graduate-entry courses (as in the US), usually lasting four or five years, have previously completed a three- or four-year university degree, commonly but by no means always in sciences. Medical graduates hold a degree specific to the country and university in and from which they graduated. This degree qualifies that medical practitioner to become licensed or registered under the laws of that particular country, and sometimes of several countries, subject to requirements for "internship" or "conditional registration".

Pediatricians must undertake further training in their chosen field. This may take from four to eleven or more years depending on jurisdiction and the degree of specialization.

In the United States, a medical school graduate wishing to specialize in pediatrics must undergo a three-year residency composed of outpatient, inpatient, and critical care rotations. Subspecialties within pediatrics require further training in the form of 3-year fellowships. Subspecialties include critical care, gastroenterology, neurology, infectious disease, hematology/oncology, rheumatology, pulmonology, child abuse, emergency medicine, endocrinology, neonatology, and others.[41]

In most jurisdictions, entry-level degrees are common to all branches of the medical profession, but in some jurisdictions, specialization in pediatrics may begin before completion of this degree. In some jurisdictions, pediatric training is begun immediately following the completion of entry-level training. In other jurisdictions, junior medical doctors must undertake generalist (unstreamed) training for a number of years before commencing pediatric (or any other) specialization. Specialist training is often largely under the control of 'pediatric organizations (see below) rather than universities and depends on the jurisdiction.

Subspecialties

[edit]

Subspecialties of pediatrics include:

(not an exhaustive list)

  • Addiction medicine (multidisciplinary)
  • Adolescent medicine
  • Child abuse pediatrics
  • Clinical genetics
  • Clinical informatics
  • Developmental-behavioral pediatrics
  • Headache medicine
  • Hospital medicine
  • Medical toxicology
  • Metabolic medicine
  • Neonatology/Perinatology
  • Pain medicine (multidisciplinary)
  • Palliative care (multidisciplinary)
  • Pediatric allergy and immunology
  • Pediatric cardiology
    • Pediatric cardiac critical care
  • Pediatric critical care
    • Neurocritical care
    • Pediatric cardiac critical care
  • Pediatric emergency medicine
  • Pediatric endocrinology
  • Pediatric gastroenterology
    • Transplant hepatology
  • Pediatric hematology
  • Pediatric infectious disease
  • Pediatric nephrology
  • Pediatric oncology
    • Pediatric neuro-oncology
  • Pediatric pulmonology
  • Primary care
  • Pediatric rheumatology
  • Sleep medicine (multidisciplinary)
  • Social pediatrics
  • Sports medicine

Other specialties that care for children

[edit]

(not an exhaustive list)

  • Child neurology
    • Addiction medicine (multidisciplinary)
    • Brain injury medicine
    • Clinical neurophysiology
    • Epilepsy
    • Headache medicine
    • Neurocritical care
    • Neuroimmunology
    • Neuromuscular medicine
    • Pain medicine (multidisciplinary)
    • Palliative care (multidisciplinary)
    • Pediatric neuro-oncology
    • Sleep medicine (multidisciplinary)
  • Child and adolescent psychiatry, subspecialty of psychiatry
  • Neurodevelopmental disabilities
  • Pediatric anesthesiology, subspecialty of anesthesiology
  • Pediatric dentistry, subspecialty of dentistry
  • Pediatric dermatology, subspecialty of dermatology
  • Pediatric gynecology
  • Pediatric neurosurgery, subspecialty of neurosurgery
  • Pediatric ophthalmology, subspecialty of ophthalmology
  • Pediatric orthopedic surgery, subspecialty of orthopedic surgery
  • Pediatric otolaryngology, subspecialty of otolaryngology
  • Pediatric plastic surgery, subspecialty of plastic surgery
  • Pediatric radiology, subspecialty of radiology
  • Pediatric rehabilitation medicine, subspecialty of physical medicine and rehabilitation
  • Pediatric surgery, subspecialty of general surgery
  • Pediatric urology, subspecialty of urology

See also

[edit]
  • American Academy of Pediatrics
  • American Osteopathic Board of Pediatrics
  • Center on Media and Child Health (CMCH)
  • Children's hospital
  • List of pediatric organizations
  • List of pediatrics journals
  • Medical specialty
  • Pediatric Oncall
  • Pain in babies
  • Royal College of Paediatrics and Child Health
  • Pediatric environmental health

References

[edit]
  1. ^ "Paediatrics" (PDF). nhs.uk. Archived (PDF) from the original on 13 July 2020. Retrieved 2 July 2020.
  2. ^ "Choosing a Pediatrician for Your New Baby (for Parents) - Nemours KidsHealth". kidshealth.org. Archived from the original on 14 July 2020. Retrieved 13 July 2020.
  3. ^ "Age limits of pediatrics". Pediatrics. 81 (5): 736. May 1988. doi:10.1542/peds.81.5.736. PMID 3357740. S2CID 245164191. Archived from the original on 19 April 2017. Retrieved 18 April 2017.
  4. ^ Sawyer, Susan M.; McNeil, Robyn; Francis, Kate L.; Matskarofski, Juliet Z.; Patton, George C.; Bhutta, Zulfiqar A.; Esangbedo, Dorothy O.; Klein, Jonathan D. (1 November 2019). "The age of paediatrics". The Lancet Child & Adolescent Health. 3 (11): 822–830. doi:10.1016/S2352-4642(19)30266-4. ISSN 2352-4642. PMID 31542355. S2CID 202732818.
  5. ^ a b c d e Duffin, Jacalyn (2010). History of Medicine, Second Edition: A Scandalously Short Introduction. University of Toronto Press.
  6. ^ a b c d e Colón, A. R.; Colón, P. A. (January 1999). Nurturing children: a history of pediatrics. Greenwood Press. ISBN 978-0-313-31080-5. Retrieved 20 October 2012.
  7. ^ Celsus, De Medicina, Book 3, Chapter 7, § 1.
  8. ^ John G. Raffensperger. Children's Surgery: A Worldwide History. McFarland. p. 21.
  9. ^ David Levinson; Karen Christensen. Encyclopedia of modern Asia. Vol. 4. Charles Scribner's Sons. p. 116.
  10. ^ Desai, A.B. Textbook Of Paediatrics. Orient blackswan. p. 1.
  11. ^ Dunn, P. M. (1995). "Soranus of Ephesus (Circa AD 98-138) and perinatal care in Roman times". Archives of Disease in Childhood. Fetal and Neonatal Edition. 73 (1): F51 – F52. doi:10.1136/fn.73.1.f51. PMC 2528358. PMID 7552600.
  12. ^ Elgood, Cyril (2010). A Medical History of Persia and The Eastern Caliphate (1st ed.). London: Cambridge. pp. 202–203. ISBN 978-1-108-01588-2. By writing a monograph on 'Diseases in Children' he may also be looked upon as the father of paediatrics.
  13. ^ U.S. National Library of Medicine, "Islamic Culture and the Medical Arts, Al-Razi, the Clinician" [1] Archived 5 January 2018 at the Wayback Machine
  14. ^ "Achar S Textbook Of Pediatrics (Third Edition)". A. B. Desai (ed.) (1989). p.1. ISBN 81-250-0440-8
  15. ^ Stern, Alexandra Minna; Markel, Howard (2002). Formative Years: Children's Health in the United States, 1880-2000. University of Michigan Press. pp. 23–24. doi:10.3998/mpub.17065. ISBN 978-0-472-02503-9. Archived from the original on 30 November 2021. Retrieved 30 November 2021.
  16. ^ Lock, Stephen; John M. Last; George Dunea (2001). The Oxford illustrated companion to medicine. Oxford University Press US. p. 173. ISBN 978-0-19-262950-0. Retrieved 9 July 2010. Rosen von Rosenstein.
  17. ^ Roberts, Michael (2003). The Age of Liberty: Sweden 1719–1772. Cambridge University Press. p. 216. ISBN 978-0-521-52707-1. Retrieved 9 July 2010.
  18. ^ Dallas, John. "Classics of Child Care". Royal College of Physicians of Edinburgh. Archived from the original on 27 July 2011. Retrieved 9 July 2010.
  19. ^ Duffin, Jacalyn (29 May 2010). History of Medicine, Second Edition: A Scandalously Short Introduction. University of Toronto Press.
  20. ^ Stern, Alexandra Minna; Markel, Howard (2002). Formative Years: Children's Health in the United States, 1880-2000. University of Michigan Press. pp. 23–24. doi:10.3998/mpub.17065. ISBN 978-0-472-02503-9. Archived from the original on 30 November 2021. Retrieved 30 November 2021.
  21. ^ "Broadribb's Introductory Pediatric Nursing". Nancy T. Hatfield (2007). p.4. ISBN 0-7817-7706-2
  22. ^ "Jacobi Medical Center - General Information". Archived from the original on 18 April 2006. Retrieved 6 April 2006.
  23. ^ Kutzsche, Stefan (8 April 2021). "Abraham Jacobi (1830–1919) and his transition from political to medical activist". Acta Paediatrica. 110 (8): 2303–2305. doi:10.1111/apa.15887. ISSN 0803-5253. PMID 33963612. S2CID 233998658. Archived from the original on 7 May 2023. Retrieved 7 May 2023.
  24. ^ a b Ballbriga, Angel (1991). "One century of pediatrics in Europe (section: development of pediatric hospitals in Europe)". In Nichols, Burford L.; et al. (eds.). History of Paediatrics 1850–1950. Nestlé Nutrition Workshop Series. Vol. 22. New York: Raven Press. pp. 6–8. ISBN 0-88167-695-0.
  25. ^ official history site (in French) of nineteenth century paediatric hospitals in Paris
  26. ^ "Introducing the Necker-Enfants Malades Hospital". Hôpital des Necker-Enfants Malades.
  27. ^ Young, D.G. (August 1999). "The Mason Brown Lecture: Scots and paediatric surgery". Journal of the Royal College of Surgeons Edinburgh. 44 (4): 211–5. PMID 10453141. Archived from the original on 14 July 2014.
  28. ^ Pearson, Howard A. (1991). "Pediatrics in the United States". In Nichols, Burford L.; et al. (eds.). History of Paediatrics 1850–1950. Nestlé Nutrition Workshop Series. Vol. 22. New York: Raven Press. pp. 55–63. ISBN 0-88167-695-0.
  29. ^ "Commentaries: Edwards A Park". Pediatrics. 44 (6). American Academy of Pediatrics: 897–901. 1969. doi:10.1542/peds.44.6.897. PMID 4903838. S2CID 43298798.
  30. ^ a b c d e f g h O'Hara, Kate (2016). "Paediatric pharmacokinetics and drug doses". Australian Prescriber. 39 (6): 208–210. doi:10.18773/austprescr.2016.071. ISSN 0312-8008. PMC 5155058. PMID 27990048.
  31. ^ a b c d e f g h i j k l m Wagner, Jonathan; Abdel-Rahman, Susan M. (2013). "Pediatric pharmacokinetics". Pediatrics in Review. 34 (6): 258–269. doi:10.1542/pir.34-6-258. ISSN 1526-3347. PMID 23729775.
  32. ^ a b c d e f Batchelor, Hannah Katharine; Marriott, John Francis (2015). "Paediatric pharmacokinetics: key considerations". British Journal of Clinical Pharmacology. 79 (3): 395–404. doi:10.1111/bcp.12267. ISSN 1365-2125. PMC 4345950. PMID 25855821.
  33. ^ Katz, Aviva L.; Webb, Sally A.; COMMITTEE ON BIOETHICS; Macauley, Robert C.; Mercurio, Mark R.; Moon, Margaret R.; Okun, Alexander L.; Opel, Douglas J.; Statter, Mindy B. (1 August 2016). "Informed Consent in Decision-Making in Pediatric Practice". Pediatrics. 138 (2): e20161485. doi:10.1542/peds.2016-1485. ISSN 0031-4005. PMID 27456510. S2CID 7951515.
  34. ^ a b Mazur, Kate A.; Berg, Stacey L., eds. (2020). Ethical Issues in Pediatric Hematology/Oncology. pp. 13–21. doi:10.1007/978-3-030-22684-8. ISBN 978-3-030-22683-1. S2CID 208302429.
  35. ^ a b Stern, Alexandra Minna; Markel, Howard (2002). Formative Years: Children's Health in the United States, 1880-2000. University of Michigan Press. pp. 23–24. doi:10.3998/mpub.17065. ISBN 978-0-472-02503-9. Archived from the original on 30 November 2021. Retrieved 30 November 2021.
  36. ^ Friedman, Lainie Ross (2004). Children, families, and health care decision making. Clarendon Press. ISBN 0-19-925154-1. OCLC 756393117.
  37. ^ a b c Martakis, K.; Schröder-Bäck, P.; Brand, H. (1 June 2018). "Developing child autonomy in pediatric healthcare: towards an ethical model". Archivos Argentinos de Pediatria. 116 (3): e401 – e408. doi:10.5546/aap.2018.eng.e401. ISSN 0325-0075. PMID 29756714. S2CID 46889502.
  38. ^ Schapiro, Tamar (1 July 1999). "What Is a Child?". Ethics. 109 (4): 715–738. doi:10.1086/233943. ISSN 0014-1704. S2CID 170129444. Archived from the original on 30 November 2021. Retrieved 30 November 2021.
  39. ^ Dondorp, W.; Bolt, I.; Tibben, A.; De Wert, G.; Van Summeren, M. (1 September 2021). "'We Should View Him as an Individual': The Role of the Child's Future Autonomy in Shared Decision-Making About Unsolicited Findings in Pediatric Exome Sequencing". Health Care Analysis. 29 (3): 249–261. doi:10.1007/s10728-020-00425-7. ISSN 1573-3394. PMID 33389383. S2CID 230112761.
  40. ^ "What Education Is Required to Be a Pediatrician?". Archived from the original on 7 June 2017. Retrieved 14 June 2017.
  41. ^ "CoPS". www.pedsubs.org. Archived from the original on 18 September 2013. Retrieved 14 August 2015.

Further reading

[edit]
  • BMC Pediatrics - open access
  • Clinical Pediatrics
  • Developmental Review - partial open access
  • JAMA Pediatrics
  • The Journal of Pediatrics - partial open access
[edit]
  • Pediatrics Directory at Curlie
  • Pediatric Health Directory at OpenMD